留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ANSYS-MATLAB联合仿真的大跨铁路悬索桥行车分析

周智辉 刘瑞涛 朱志辉 龚威 余志武

周智辉, 刘瑞涛, 朱志辉, 龚威, 余志武. 基于ANSYS-MATLAB联合仿真的大跨铁路悬索桥行车分析[J]. 交通运输工程学报, 2021, 21(2): 117-128. doi: 10.19818/j.cnki.1671-1637.2021.02.010
引用本文: 周智辉, 刘瑞涛, 朱志辉, 龚威, 余志武. 基于ANSYS-MATLAB联合仿真的大跨铁路悬索桥行车分析[J]. 交通运输工程学报, 2021, 21(2): 117-128. doi: 10.19818/j.cnki.1671-1637.2021.02.010
ZHOU Zhi-hui, LIU Rui-tao, ZHU Zhi-hui, GONG Wei, YU Zhi-wu. Train passing analysis on large-span railway suspension bridge based on ANSYS-MATLAB co-simulation[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 117-128. doi: 10.19818/j.cnki.1671-1637.2021.02.010
Citation: ZHOU Zhi-hui, LIU Rui-tao, ZHU Zhi-hui, GONG Wei, YU Zhi-wu. Train passing analysis on large-span railway suspension bridge based on ANSYS-MATLAB co-simulation[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 117-128. doi: 10.19818/j.cnki.1671-1637.2021.02.010

基于ANSYS-MATLAB联合仿真的大跨铁路悬索桥行车分析

doi: 10.19818/j.cnki.1671-1637.2021.02.010
基金项目: 

国家自然科学基金项目 52078498

详细信息
    作者简介:

    周智辉(1976-),男,湖南攸县人,中南大学副教授,工学博士,从事车桥振动研究

    通讯作者:

    朱志辉(1979-),男,河南潢川人,中南大学教授,工学博士

  • 中图分类号: U24

Train passing analysis on large-span railway suspension bridge based on ANSYS-MATLAB co-simulation

Funds: 

National Natural Science Foundation of China 52078498

More Information
    Author Bio:

    ZHOU Zhi-hui(1976-), male, associate professor, PhD, zzhyy@csu.edu.cn

    Corresponding author: ZHU Zhi-hui(1979-), male, professor, PhD, zzhh0703@163.com
  • 摘要: 针对大跨铁路悬索桥结构复杂、几何非线性显著的特点开展行车动力分析,提出了一种ANSYS与MATLAB实时交互、联合仿真的列车-轨道-桥梁耦合振动分析方法; 在ANSYS内建立悬索桥和轨道结构精细有限元模型,在MATLAB内基于多刚体动力学理论组装车辆质量、阻尼和刚度矩阵,并将轨道结构动力微分方程系数矩阵导至MATLAB中; 分别建立悬索桥子系统、轨道-车辆子系统的动力微分方程,然后基于异步长策略,以大时间步长在ANSYS内考虑主缆几何刚度,并通过更新结构刚度矩阵来求解悬索桥子系统振动响应,以小时间步长在MATLAB内考虑轮轨空间接触关系,并通过施加轨道不平顺来求解轨道-车辆子系统动力响应,2种计算软件通过实时交换数据实现子系统之间的耦合求解; 通过分析某单跨铁路简支梁桥的实测数据验证了该方法的正确性,并利用该联合仿真方法对主跨为660 m的某铁路悬索桥进行了行车动力计算。分析结果表明:随着车速的提高,桥梁动力响应增大,行车安全性与平稳性趋于恶化; 在车速不大于180 km·h-1的工况下,该悬索桥能够满足行车安全性要求; 在列车动力荷载作用下,不考虑悬索桥几何刚度会导致跨中竖向位移产生7.4%的计算误差; 考虑几何刚度、不更新桥梁刚度矩阵导致的桥梁与列车响应计算误差均不超过1%,能够满足工程计算精度需求。可见,提出的联合仿真方法可用于大跨柔性铁路桥梁的行车动力分析。

     

  • 图  1  单个大时间步长内的计算流程

    Figure  1.  Calculation flow in single coarse time step

    图  2  生成标识文件的ANSYS命令流

    Figure  2.  ANSYS codes to create flag files

    图  3  检查标识文件MATLAB代码

    Figure  3.  MATLAB codes to check flag files

    图  4  更新标识文件的MATLAB代码

    Figure  4.  MATLAB codes to update flag files

    图  5  检查标识文件的ANSYS命令流

    Figure  5.  ANSYS codes to check flag files

    图  6  联合仿真程序流程

    Figure  6.  Flow of co-simulation program

    图  7  简支梁桥跨中竖向位移

    Figure  7.  Midspan vertical displacement of simply supported beam bridge

    图  8  悬索桥立面布置

    Figure  8.  Elevation arrangement of suspension bridge

    图  9  悬索桥有限元模型

    Figure  9.  FEM of suspension bridge

    图  10  典型工况中主梁跨中轨下桥面板动力响应时程

    Figure  10.  Dynamic responses time histories of bridge deck of midspan section below track under typical working conditions

    图  11  工况3中跨主缆应力时程

    Figure  11.  Stress time history of midspan main cable in working condition 3

    图  12  跨中左轨位移时程

    Figure  12.  Displacement time histories of left rail at midspan

    图  13  首节车体加速度

    Figure  13.  Accelerations of first carbody

    图  14  首节车第1轮对左侧轮轨力

    Figure  14.  Left wheel-rail forces of first wheel-set of first vehicle

    表  1  悬索桥模态分析结果

    Table  1.   Modal analysis result of suspension bridge

    表  2  工况设置

    Table  2.   Working condition setting

    工况 车速/(km·h-1) 单/双线 是否考虑几何刚度 是否更新刚度矩阵
    1 80
    2 100
    3 120
    4 140
    5 160
    6 180
    7 120
    8 120
    9 120
    下载: 导出CSV

    表  3  桥梁最大动力响应

    Table  3.   Maximum dynamic responses of bridge

    工况 位移/mm 加速度/(m·s-2)
    左跨1/2截面轨下桥面板 中跨1/4截面轨下桥面板 中跨1/2截面轨下桥面板 左跨1/2截面轨下桥面板 中跨1/4截面轨下桥面板 中跨1/2截面轨下桥面板
    横向 竖向 横向 竖向 横向 竖向 横向 竖向 横向 竖向 横向 竖向
    1 0.2 -4.2 0.4 86.7 0.5 121.2 0.021 2 0.285 4 0.013 2 0.311 7 0.013 2 0.378 0
    2 0.2 -4.2 0.3 86.9 0.4 121.6 0.021 0 0.380 9 0.015 8 0.405 7 0.013 8 0.531 4
    3 0.2 -4.2 0.3 87.1 0.4 121.8 0.026 7 0.509 0 0.019 2 0.636 0 0.019 1 0.704 0
    4 0.2 -4.2 0.3 87.4 0.4 122.3 0.030 9 0.666 8 0.027 4 0.739 5 0.025 0 0.863 6
    5 0.2 -4.2 0.3 87.9 0.3 122.5 0.035 9 0.845 0 0.030 9 0.931 0 0.030 2 1.087 1
    6 0.2 -4.2 0.3 88.1 0.3 123.6 0.036 8 0.966 1 0.032 7 1.133 6 0.036 9 1.358 7
    7 0.2 -4.8 0.2 138.2 0.1 239.4 0.028 7 0.508 7 0.044 4 1.074 1 0.031 0 0.514 9
    8 0.2 -4.4 0.2 93.7 0.2 130.7 0.026 4 0.619 8 0.024 9 0.670 2 0.024 0 0.806 8
    9 0.2 -4.2 0.2 86.6 0.3 121.0 0.025 6 0.618 2 0.024 6 0.651 0 0.023 2 0.760 7
    下载: 导出CSV

    表  4  最大车辆动力响应

    Table  4.   Maximum dynamic responses of vehicles

    工况 动车 拖车
    加速度/(m·s-2) 脱轨系数 轮轴横向力/kN 轮重减载率 加速度/(m·s-2) 脱轨系数 轮轴横向力/kN 轮重减载率
    横向 竖向 横向 竖向
    1 0.180 1 0.161 0 0.104 0 11.148 0.199 8 0.199 4 0.180 8 0.110 4 10.809 0.221 3
    2 0.207 3 0.194 6 0.114 0 13.644 0.128 5 0.233 6 0.221 8 0.120 7 12.869 0.133 1
    3 0.236 0 0.227 8 0.130 1 14.980 0.165 6 0.260 5 0.257 1 0.134 2 14.390 0.163 6
    4 0.258 1 0.259 7 0.138 1 14.850 0.206 9 0.288 5 0.293 4 0.145 8 14.919 0.199 5
    5 0.272 8 0.288 1 0.136 2 15.481 0.273 6 0.312 8 0.328 2 0.148 3 15.264 0.246 8
    6 0.282 6 0.314 2 0.161 5 16.851 0.307 4 0.327 4 0.361 3 0.178 8 16.934 0.268 0
    7 0.235 9 0.252 4 0.131 2 15.130 0.165 8 0.260 6 0.280 5 0.134 9 14.513 0.159 8
    8 0.236 0 0.229 3 0.130 2 14.448 0.165 8 0.260 6 0.259 8 0.134 2 14.772 0.163 9
    9 0.235 9 0.227 6 0.129 9 14.980 0.166 4 0.260 5 0.257 0 0.134 0 14.388 0.164 6
    下载: 导出CSV
  • [1] 陈良江, 周勇政. 我国高速铁路桥梁技术的发展与实践[J]. 高速铁路技术, 2020, 11(2): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202002006.htm

    CHEN Liang-jiang, ZHOU Yong-zheng. Development and practice of high-speed railway bridge technology in China[J]. High Speed Railway Technology, 2020, 11(2): 27-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202002006.htm
    [2] 李迎九. 千米跨度高速铁路悬索桥建造技术现状与展望[J]. 中国铁路, 2019(9): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201909001.htm

    LI Ying-jiu. Current situation and expectation of construction technology for HSR suspension bridge with kilometers span[J]. China Railway, 2019(9): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201909001.htm
    [3] 李永乐, 蔡宪棠, 安伟胜, 等. 大跨度铁路悬索桥结构刚度敏感性研究[J]. 中国铁道科学, 2011, 32(4): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201104007.htm

    LI Yong-le, CAI Xian-tang, AN Wei-sheng, et al. Study on the sensitivity of the structural stiffness of long-span railway suspension bridge[J]. China Railway Science, 2011, 32(4): 24-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201104007.htm
    [4] 沈锐利, 张东, 唐茂林. 大跨度铁路悬索桥合理刚度指标值的探讨[C]//中国土木工程学会. 2012年全国桥梁学术大会论文集. 北京: 人民交通出版社, 2012: 223-239.

    SHEN Rui-li, ZHANG Dong, TANG Mao-lin. Discussion on rational stiffness index of long-span railway suspension bridge[C]//Chinese Society of Civil Engineering. Proceedings of 2012 National Bridge and Structure Academic Conference. Beijing: China Communications Press, 2012: 233-239. (in Chinese)
    [5] 唐贺强, 徐恭义, 刘汉顺. 悬索桥用于铁路桥梁的可行性分析[J]. 桥梁建设, 2017, 47(2): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201702003.htm

    TANG He-qiang, XU Gong-yi, LIU Han-shun. Feasibility analysis of applying of suspension bridge type to railway bridges[J]. Bridge Construction, 2017, 47(2): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201702003.htm
    [6] ZHAI Wan-ming, HAN Zhao-ling, CHEN Zhao-wei, et al. Train-track-bridge dynamic interaction: a state-of-the-art review[J]. Vehicle System Dynamics, 2019, 57(7): 984-1027. doi: 10.1080/00423114.2019.1605085
    [7] 周智辉, 曾庆元. 桥上列车脱轨计算分析[J]. 中国铁道科学, 2004, 25(4): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200404008.htm

    ZHOU Zhi-hui, ZENG Qing-yuan. Computation and analysis of train derailment on bridge[J]. China Railway Science, 2004, 25(4): 47-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200404008.htm
    [8] DINH V N, KIM K D, WARNITCHAI P. Dynamic analysis of three-dimensional bridge-high-speed train interactions using a wheel-rail contact model[J]. Engineering Structures, 2009, 31(12): 3090-3106. doi: 10.1016/j.engstruct.2009.08.015
    [9] ANTOLÍN P, ZHANG Nan, GOICOLEA J M, et al. Consideration of nonlinear wheel-rail contact forces for dynamic vehicle-bridge interaction in high-speed railways[J]. Journal of Sound and Vibration, 2013, 332(5): 1231-1251. doi: 10.1016/j.jsv.2012.10.022
    [10] LI Q, XU Y L, WU D J, et al. Computer-aided nonlinear vehicle-bridge interaction analysis[J]. Journal of Vibration and Control, 2010, 16(12): 1791-1816. doi: 10.1177/1077546309341603
    [11] ZHAI Wan-ming. Two simple fast integration methods for large-scale dynamic problems in engineering[J]. International Journal for Numerical Methods in Engineering, 1996, 39(24): 4199-4214. doi: 10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
    [12] ZHAI Wan-ming, XIA He, CAI Cheng-biao, et al. High-speed train-track-bridge dynamic interactions—Part Ⅰ: theoretical model and numerical simulation[J]. International Journal of Rail Transportation, 2013, 1(1/2): 3-24.
    [13] 吴定俊, 李奇, 陈艾荣. 车桥耦合振动迭代求解数值稳定性问题[J]. 力学季刊, 2007, 28(3): 405-411. doi: 10.3969/j.issn.0254-0053.2007.03.009

    WU Ding-jun, LI Qi, CHEN Ai-rong. Numerical stability of iteration scheme for solution vehicle-bridge coupling vibration[J]. Chinese Quarterly of Mechanics, 2007, 28(3): 405-411. (in Chinese) doi: 10.3969/j.issn.0254-0053.2007.03.009
    [14] ZHU Zhi-hui, GONG Wei, WANG Li-dong, et al. An efficient multi-time-step method for train-track-bridge interaction[J]. Computers and Structures, 2018, 196: 36-48. doi: 10.1016/j.compstruc.2017.11.004
    [15] 张楠, 夏禾. 基于全过程迭代的车桥耦合动力系统分析方法[J]. 中国铁道科学, 2013, 34(5): 32-38. doi: 10.3969/j.issn.1001-4632.2013.05.06

    ZHANG Nan, XIA He. A vehicle-bridge interaction dynamic system analysis method based on inter-system iteration[J]. China Railway Science, 2013, 34(5): 32-38. (in Chinese) doi: 10.3969/j.issn.1001-4632.2013.05.06
    [16] YU Zhi-wu, MAO Jian-feng. Probability analysis of train-track-bridge interactions using a random wheel/rail contact model[J]. Engineering Structures, 2017, 144: 120-138. doi: 10.1016/j.engstruct.2017.04.038
    [17] XIA H, XU Y L, CHAN T H T. Dynamic interaction of long suspension bridges with running trains[J]. Journal of Sound and Vibration, 2000, 237(2): 263-280. doi: 10.1006/jsvi.2000.3027
    [18] 郭向荣, 何玮, 朱志辉, 等. 横风作用下货物列车通过大跨度铁路斜拉桥的走行安全性研究[J]. 中国铁道科学, 2016, 37(2): 41-47. doi: 10.3969/j.issn.1001-4632.2016.02.06

    GUO Xiang-rong, HE Wei, ZHU Zhi-hui, et al. Running safety of freight train passing long-span cable-stayed railway bridge under cross wind[J]. China Railway Science, 2016, 37(2): 41-47. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.02.06
    [19] 韩艳, 夏禾, 郭薇薇. 斜拉桥在地震与列车荷载同时作用下的动力响应分析[J]. 工程力学, 2006, 23(1): 93-98. doi: 10.3969/j.issn.1000-4750.2006.01.018

    HAN Yan, XIA He, GUO Wei-wei. Dynamic response of cable-stayed bridge to running trains and earthquakes[J]. Engineering Mechanics, 2006, 23(1): 93-98. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.01.018
    [20] GONG Wei, ZHU Zhi-hui, LIU Yu, et al. Running safety assessment of a train traversing a three-tower cable-stayed bridge under spatially varying ground motion[J]. Railway Engineering Science, 2020, 28(2): 184-198. doi: 10.1007/s40534-020-00209-8
    [21] ZHU Zhi-hui, GONG Wei, WANG Kun, et al. Dynamic effect of heavy-haul train on seismic response of railway cable-stayed bridge[J]. Journal of Central South University, 2020, 27(7): 1939-1955. doi: 10.1007/s11771-020-4421-z
    [22] 李小珍, 秦羽, 刘德军, 等. 侧风作用下五峰山长江大桥列车行车安全控制[J]. 铁道工程学报, 2018(7): 58-64. doi: 10.3969/j.issn.1006-2106.2018.07.011

    LI Xiao-zhen, QIN Yu, LIU De-jun, et al. The safety control of train running on the Wufeng Mountain Yangtze River Bridge under crosswind[J]. Journal of Railway Engineering Society, 2018(7): 58-64. (in Chinese) doi: 10.3969/j.issn.1006-2106.2018.07.011
    [23] 雷虎军, 刘伟, 黄炳坤. 地震作用下千米级高速铁路悬索桥行车安全性研究[J]. 振动与冲击, 2020, 39(10): 249-255. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202010035.htm

    LEI Hu-jun, LIU Wei, HUANG Bing-kun. Running safety of high-speed railway kilometre-level suspension bridge under earthquake[J]. Journal of Vibration and Shock, 2020, 39(10): 249-255. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202010035.htm
    [24] YAU J D. Dynamic response analysis of suspended beams subjected to moving vehicles and multiple support excitations[J]. Journal of Sound and Vibration, 2009, 325(4/5): 907-922. http://www.sciencedirect.com/science/article/pii/S0022460X09003216
    [25] 谢铠泽, 赵维刚, 蔡小培, 等. 悬索桥初始内力与几何非线性对梁轨相互作用的影响[J]. 交通运输工程学报, 2020, 20(1): 82-91. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001009.htm

    XIE Kai-ze, ZHAO Wei-gang, CAI Xiao-pei, et al. Impacts of initial internal force and geometric nonlinearity of suspension bridge on bridge-rail interaction[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 82-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001009.htm
    [26] 翟婉明, 蔡成标, 王开云. 高速列车-轨道-桥梁动态相互作用原理及模型[J]. 土木工程学报, 2005, 38(11): 132-137. doi: 10.3321/j.issn:1000-131X.2005.11.024

    ZHAI Wan-ming, CAI Cheng-biao, WANG Kai-yun. Mechanism and model of high-speed train-track-bridge dynamic interaction[J]. China Civil Engineering Journal, 2005, 38(11): 132-137. (in Chinese) doi: 10.3321/j.issn:1000-131X.2005.11.024
    [27] KALKER J J. On the rolling contact of two elastic bodies in the presence of dry friction[D]. Delt: Delt University of Technology, 1967.
    [28] VERMEULEN P J, JOHNSON K L. Contact of nonspherical elastic bodies transmitting tangential forces[J]. Journal of Applied Mechanics, 1964, 31(2): 338-340. doi: 10.1115/1.3629610
    [29] NOUR-OMID B, RANKIN C C. Finite rotation analysis and consistent linearization using projectors[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 93(3): 353-384. doi: 10.1016/0045-7825(91)90248-5
    [30] ZHU Zhi-hui, GONG Wei, WANG Li-dong, et al. Efficient assessment of 3D train-track-bridge interaction combining multi-time-step method and moving track technique[J]. Engineering Structures, 2019, 183: 290-302. doi: 10.1016/j.engstruct.2019.01.036
    [31] 杨海洋, 钟铁毅, 夏禾. 铁路悬索桥纵向非一致激励地震响应分析[J]. 振动与冲击, 2014, 33(22): 157-163. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201422028.htm

    YANG Hai-yang, ZHONG Tie-yi, XIA He. Seismic responses analysis of a railway suspension bridge under longitudinal non-uniform excitations[J]. Journal of Vibration and Shock, 2014, 33(22): 157-163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201422028.htm
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  762
  • HTML全文浏览量:  466
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-03
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回