留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边远海域救援船舶与直升机联合搜救优化

林婉妮 王诺 高忠印 吴迪

林婉妮, 王诺, 高忠印, 吴迪. 边远海域救援船舶与直升机联合搜救优化[J]. 交通运输工程学报, 2021, 21(2): 187-199. doi: 10.19818/j.cnki.1671-1637.2021.02.016
引用本文: 林婉妮, 王诺, 高忠印, 吴迪. 边远海域救援船舶与直升机联合搜救优化[J]. 交通运输工程学报, 2021, 21(2): 187-199. doi: 10.19818/j.cnki.1671-1637.2021.02.016
LIN Wan-ni, WANG Nuo, GAO Zhong-yin, WU Di. Associated searching and rescuing optimization of salvage vessels and helicopters in remote sea area[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 187-199. doi: 10.19818/j.cnki.1671-1637.2021.02.016
Citation: LIN Wan-ni, WANG Nuo, GAO Zhong-yin, WU Di. Associated searching and rescuing optimization of salvage vessels and helicopters in remote sea area[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 187-199. doi: 10.19818/j.cnki.1671-1637.2021.02.016

边远海域救援船舶与直升机联合搜救优化

doi: 10.19818/j.cnki.1671-1637.2021.02.016
基金项目: 

国家自然科学基金项目 42030409

辽宁省社会科学基金青年项目 L19CGJ001

详细信息
    作者简介:

    林婉妮(1991-),女,辽宁海城人,军事科学院系统工程研究院工程师,工学博士,从事物流工程与管理研究

    通讯作者:

    吴迪(1989-),男,黑龙江大庆人,大连海事大学讲师,工学博士

  • 中图分类号: U676.8

Associated searching and rescuing optimization of salvage vessels and helicopters in remote sea area

Funds: 

National Natural Science Foundation of China 42030409

Social Science Foundation Youth Project of Liaoning Province L19CGJ001

More Information
    Author Bio:

    LIN Wan-ni(1991-), female, engineer, PhD, wn_lin@126.com

    Corresponding author: WU Di(1989-), male, assistant professor, PhD, wudidlmu@163.com
  • 摘要: 以救援船舶行驶路线、释放救援直升机时刻与救援直升机搜索方案为优化内容,以搜救时间最短和发现概率最大为目标,建立了海空联合搜救双目标优化模型,并结合地理信息系统和智能算法设计了模型求解算法; 利用地理信息系统模拟了复杂海洋环境中风、浪因素影响下的救援船舶和遇险船舶运行状态,采用自适应混沌搜索替代随机搜索,改进了传统粒子群算法; 以从南海永兴岛出发前往边远海域执行搜救任务为算例,验证了搜救优化模型。研究结果表明:利用地理信息系统与智能算法结合的海空联合搜救方法得到的搜救行动总时间为4.4~16.9 h,发现概率可达45.12%~99.76%;与传统的粒子群算法相比,改进后的粒子群算法在发现概率分别为85.00%、90.00%与95.00%的情况下,搜救总时间分别减少1.5、1.3与1.1 h,减少幅度分别为18.07%、14.28%与10.57%,改进后的算法在计算速度、计算稳定性与结果优化方面均效果良好; 海空联合搜救方案优化与传统的多目标路径优化问题有所不同,需要建立特定的海空联合搜救模型,结合新的技术手段开展研究; 未来建议发展不同船型、机型参与的海空联合搜救优化方法,以适应不断提高边远海域搜救行动效率的发展要求。

     

  • 图  1  救援船舶和遇险船舶的相对位置

    Figure  1.  Relative locations of salvage vessel and vessel in distress

    图  2  扩展方形搜索

    Figure  2.  Extended square searching

    图  3  扫海宽度与航线间隔相对关系

    Figure  3.  Relative relation of sweeping width and route spacing

    图  4  发现概率与覆盖比关系曲线

    Figure  4.  Relation curve of detection probability and coverage ratio

    图  5  海空联合搜救

    Figure  5.  Air-sea associated searching and rescuing

    图  6  PSO算法改进

    Figure  6.  Improvement of PSO algorithm

    图  7  计算流程

    Figure  7.  Calculation process

    图  8  非支配解集分布

    Figure  8.  Distributions of non-dominated solution sets

    图  9  有效浪高分布

    Figure  9.  Distribution of significant wave height

    图  10  算法改进前后的帕累托前沿

    Figure  10.  Pareto frontiers before and after algorithm improvement

    表  1  IGD值对比

    Table  1.   Comparison of IGD values

    测试函数 传统粒子群算法 改进粒子群算法
    计算结果 计算结果 改进幅度
    平均值/10-4 最小值/10-4 标准差/10-4 平均值/10-4 最小值/10-4 标准差/10-4 平均值改进幅度/% 最小值改进幅度/% 标准差改进幅度/%
    Z1 11.00 8.90 1.40 9.20 7.80 0.75 16.36 12.36 46.43
    Z2 8.30 7.20 0.86 7.40 6.80 0.54 10.84 5.56 37.21
    Z3 36.00 33.00 2.40 33.00 30.00 1.50 8.33 9.09 37.50
    Z4 33.00 23.00 9.60 23.00 17.00 5.10 30.30 26.09 46.88
    下载: 导出CSV

    表  2  SPM值对比

    Table  2.   Comparison of SPM values

    测试函数 传统粒子群算法 改进粒子群算法
    计算结果 计算结果 改进幅度
    平均值/10-4 最小值/10-4 标准差/10-4 平均值/10-4 最小值/10-4 标准差/10-4 平均值改进幅度/% 最小值改进幅度/% 标准差改进幅度/%
    Z1 24.00 21.00 2.20 20.00 18.00 1.40 16.67 14.29 36.36
    Z2 21.00 17.00 3.10 18.00 13.00 1.80 14.29 23.53 41.94
    Z3 61.00 31.00 8.20 41.00 29.00 5.40 32.79 6.45 34.15
    Z4 43.00 50.00 24.00 29.00 14.00 17.00 32.56 72.00 29.17
    下载: 导出CSV

    表  3  海上风、浪数据

    Table  3.   Data of wind and wave in sea

    时间/h 实测风向/(°) 实测风速/(m·s-1) 基于GIS预测的救援船舶位置浪高/m 基于GIS预测的漂移船舶位置浪高/m
    0.0 33.1 22.4 4.1 4.2
    0.5 41.2 21.2 5.1 4.5
    1.0 61.4 21.3 4.5 3.9
    1.5 34.1 22.3 3.7 4.3
    2.0 40.6 21.5 4.9 5.1
    2.5 40.0 21.8 5.0 4.8
    3.0 47.2 21.5 4.0 3.7
    3.5 45.5 21.1 4.2 4.7
    4.0 46.6 21.9 4.8 4.1
    4.5 53.6 22.5 3.6 3.6
    5.0 58.8 21.9 5.2 4.1
    5.5 53.7 21.1 4.8 4.6
    6.0 57.6 22.6 4.5 5.0
    6.5 40.0 21.7 3.8 3.9
    7.0 33.8 22.1 4.6 4.8
    7.5 49.4 22.6 4.8 3.6
    8.0 52.6 21.9 4.9 4.2
    8.5 46.3 21.6 4.8 3.8
    9.0 41.0 22.6 4.9 5.0
    9.5 61.1 21.8 5.3 4.4
    10.0 38.9 21.6 3.8 5.0
    10.5 39.5 21.9 5.1 4.2
    11.0 38.9 21.9 5.3 5.0
    11.5 35.7 21.4 4.6 3.8
    下载: 导出CSV

    表  4  救援船舶和遇险船舶数据

    Table  4.   Data of salvage vessels and vessels in distress

    时间/h 风、浪影响下的救援船舶航速/kn 遇险船舶航速/kn 遇险船舶航向/(°) 遇险船舶位置/n mile 救援船舶位置/n mile
    0.0 19.967 4.342 33.1 (200.00, 0.00) (0.00, 0.00)
    0.5 19.969 4.647 41.2 (201.85, 1.49) (9.99, 0.07)
    1.0 19.968 4.522 61.4 (202.94, 2.62) (19.99, 0.21)
    1.5 19.966 4.446 34.1 (204.10, 4.54) (29.99, 0.44)
    2.0 19.969 3.414 40.6 (205.23, 5.71) (39.99, 0.74)
    2.5 19.969 5.023 40.0 (206.66, 7.03) (49.98, 1.12)
    3.0 19.967 4.940 47.2 (208.45, 8.38) (59.97, 1.58)
    3.5 19.967 4.672 45.5 (209.62, 9.61) (69.96, 2.11)
    4.0 19.969 4.369 46.6 (210.94, 11.48) (79.94, 2.78)
    4.5 19.966 4.355 53.6 (212.18, 12.52) (89.91, 3.51)
    5.0 19.970 4.465 58.8 (213.91, 14.26) (99.87, 4.37)
    5.5 19.969 4.436 53.7 (215.82, 15.78) (109.83, 5.35)
    6.0 19.968 3.897 57.6 (217.63, 17.40) (119.76, 6.46)
    6.5 19.966 3.352 40.0 (218.99, 18.62) (129.68, 7.69)
    7.0 19.968 4.722 33.8 (220.34, 20.52) (139.59, 9.08)
    7.5 19.969 3.528 49.4 (221.91, 22.17) (149.47, 10.65)
    8.0 19.969 3.541 52.6 (223.84, 23.76) (159.31, 12.39)
    8.5 19.969 3.773 46.3 (225.08, 25.49) (169.12, 14.34)
    9.0 19.969 3.870 41.0 (226.54, 27.39) (178.87, 16.56)
    9.5 19.970 4.371 61.1 (227.83, 28.94) (188.57, 19.01)
    10.0 19.966 5.112 38.9 (229.82, 30.80) (198.18, 21.76)
    10.5 19.969 4.663 39.5 (230.85, 31.99) (207.73, 24.75)
    11.0 19.970 5.028 38.9 (232.54, 33.09) (217.20, 27.94)
    11.5 19.968 3.630 35.7 (234.30, 34.80) (226.48, 31.66)
    12.0 (236.20, 36.78) (235.33, 36.32)
    下载: 导出CSV

    表  5  改进算法运算结果

    Table  5.   Improved algorithm's computational result

    约束概率/% 起飞时刻/h 起飞时与遇险船舶之间的距离/n mile 飞机搜索航线间隔/n mile 搜寻时间/h 发现概率/%
    85.00 3.0 145.40 1.60 6.8 85.50
    90.00 4.0 128.50 1.30 7.8 90.30
    95.00 5.5 102.60 0.96 9.3 95.50
    下载: 导出CSV

    表  6  算法对比

    Table  6.   Comparison of algorithms

    约束概率/% 传统粒子群算法 改进粒子群算法
    发现概率/% 搜寻时间/h 发现概率/% 搜寻时间/h 搜寻时间缩减幅度/%
    85.00 85.10 8.3 85.50 6.8 18.07
    90.00 90.20 9.1 90.30 7.8 14.28
    95.00 95.10 10.4 95.50 9.3 10.57
    下载: 导出CSV
  • [1] 艾兵, 杨睿. 直升机海上搜索航路辅助规划算法[J]. 电光与控制, 2017, 24(11): 91-94, 99. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201711021.htm

    AI Bing, YANG Rui. An algorithm of auxiliary route planning for helicopter marine search[J]. Electronics Optics and Control, 2017, 24(11): 91-94, 99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201711021.htm
    [2] 严建钢, 杨士锋. 直升机应召搜潜中一种快速搜索方式研究[J]. 运筹与管理, 2016, 5(4): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL201604008.htm

    YAN Jian-gang, YANG Shi-feng. A quick search method for summoned antisubmarine based on helicopter[J]. Operations Research and Management Science, 2016, 25(4): 44-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL201604008.htm
    [3] 张福光. 直升机海上搜救最优模式研究[J]. 系统工程理论与实践, 2001(3): 87-91. doi: 10.3321/j.issn:1000-6788.2001.03.017

    ZHANG Fu-guang. Study of the optimal search and rescue model of helicopter on sea[J]. Systems Engineering-Theory and Practice, 2001(3): 87-91. (in Chinese) doi: 10.3321/j.issn:1000-6788.2001.03.017
    [4] 盖文妹, 蒋仲安, 邓云峰, 等. 应急救援物资车辆运输路线多目标优化[J]. 北京科技大学学报, 2014, 36(10): 1384-1393. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201410016.htm

    GAI Wen-mei, JIANG Zhong-an, DENG Yun-feng, et al. Multi-objective route optimization of transporting emergency goods and materials for rescue[J]. Journal of University of Science and Technology Beijing, 2014, 36(10): 1384-1393. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201410016.htm
    [5] 张雷, 马璐, 元昌安. 应急救援多目标时限指派模型[J]. 中国安全科学学报, 2012, 22(6): 170-176. doi: 10.3969/j.issn.1003-3033.2012.06.027

    ZHANG Lei, MA Lu, YUAN Chang-an. Research on multi-objective model for emergency rescue assignment with time limit[J]. China Safety Science Journal, 2012, 22(6): 170-176. (in Chinese) doi: 10.3969/j.issn.1003-3033.2012.06.027
    [6] 王海军, 杜丽敬, 胡蝶, 等. 不确定条件下的应急物资配送选址-路径问题[J]. 系统管理学报, 2015, 24(6): 828-834. https://www.cnki.com.cn/Article/CJFDTOTAL-XTGL201506006.htm

    WANG Hai-jun, DU Li-jing, HU Die, et al. Location-routing problem for relief distribution in emergency logistics under uncertainties[J]. Journal of Systems and Management, 2015, 24(6): 828-834. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTGL201506006.htm
    [7] AKBARI A, PELOT R, EISELT H A. A modular capacitated multi-objective model for locating maritime search and rescue vessels[J]. Annals of Operations Research, 2018, 267: 3-28. doi: 10.1007/s10479-017-2593-1
    [8] 孙世彬, 田勇. 船机立体配合技术在海难救助中的应用[J]. 航海技术, 2011(5): 28-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HHJS201105012.htm

    SUN Shi-bin, TIAN Yong. Application of ship machine three-dimensional cooperation technology in shipwreck rescue[J]. Marine Navigation, 2011(5): 28-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHJS201105012.htm
    [9] 谢立成, 周元波. 救助直升机船载工作的探讨[J]. 世界海运, 2016, 39(12): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HYZZ201612010.htm

    XIE Li-cheng, ZHOU Yuan-bo. Discussion on the shipborne work of rescue helicopter[J]. World Shipping, 2016, 39(12): 39-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYZZ201612010.htm
    [10] 杜永浩, 邢立宁, 陈盈果. 多平台海上协同搜索与路径优化策略研究[J]. 控制与决策, 2020, 35(1): 147-153. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202001019.htm

    DU Yong-hao, XING Li-ning, CHEN Ying-guo. Strategies of maritime cooperative searching and path optimizing using multiple platforms[J]. Control and Decision, 2020, 35(1): 147-153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202001019.htm
    [11] 王书晓, 李伟, 郑亚波, 等. 舰机协同海上搜寻关键问题研究[J]. 指挥控制与仿真, 2016, 38(1): 34-37. doi: 10.3969/j.issn.1673-3819.2016.01.008

    WANG Shu-xiao, LI Wei, ZHENG Ya-bo, et al. Several key problems of maritime search of warship-helicopter cooperation[J]. Command Control and Simulation, 2016, 38(1): 34-37. (in Chinese) doi: 10.3969/j.issn.1673-3819.2016.01.008
    [12] 焦俊超, 马安青, 娄安刚, 等. GIS和Google Earth开发在溢油预测中的整合应用[J]. 遥感技术与应用, 2011, 26(2): 215-219. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201102013.htm

    JIAO Jun-chao, MA An-qing, LOU An-gang, et al. The integration application of GIS and Google Earth development in oil spill prediction[J]. Remote Sensing Technology and Application, 2011, 26(2): 215-219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201102013.htm
    [13] 焦俊超, 马安青, 娄安刚, 等. 基于GIS的渤海湾溢油预测系统研究[J]. 海洋环境科学, 2011, 30(5): 735-738. doi: 10.3969/j.issn.1007-6336.2011.05.030

    JIAO Jun-chao, MA An-qing, LOU An-gang, et al. Prediction of oil spill based on GIS in Bohai Bay[J]. Marine Environmental Science, 2011, 30(5): 735-738. (in Chinese) doi: 10.3969/j.issn.1007-6336.2011.05.030
    [14] 苏京志, 王东晓, 陈举, 等. 利用回归模型模拟卫星跟踪海洋漂流浮标轨迹[J]. 地球科学进展, 2005, 20(6): 607-617. doi: 10.3321/j.issn:1001-8166.2005.06.003

    SU Jing-zhi, WANG Dong-xiao, CHEN Ju, et al. Modeling the trajectories of satellite-tracked drifters with regression models[J]. Advances in Earth Science, 2005, 20(6): 607-617. (in Chinese) doi: 10.3321/j.issn:1001-8166.2005.06.003
    [15] 魏延亮, 张建辉. 基于GIS的海洋渔业应急救援系统建设研究[J]. 测绘与空间地理信息, 2013, 36(2): 56-58. doi: 10.3969/j.issn.1672-5867.2013.02.016

    WEI Yan-liang, ZHANG Jian-hui. Research of construction of ocean finish emergency rescue system based on the GIS[J]. Geomatics and Spatial Information Technology, 2013, 36(2): 56-58. (in Chinese) doi: 10.3969/j.issn.1672-5867.2013.02.016
    [16] 黎夏, 叶嘉安. 遗传算法和GIS结合进行空间优化决策[J]. 地理学报, 2004, 59(5): 745-753. doi: 10.3321/j.issn:0375-5444.2004.05.013

    LI Xia, YE Jia-an. Optimal spatial search using genetic algorithms and GIS[J]. Acta Geographica Sinica, 2004, 59(5): 745-753. (in Chinese) doi: 10.3321/j.issn:0375-5444.2004.05.013
    [17] 肖方兵, 尹勇, 金一丞, 等. 基于随机粒子仿真的海上搜寻区域确定[J]. 中国航海, 2011, 34(3): 34-39. doi: 10.3969/j.issn.1000-4653.2011.03.008

    XIAO Fang-bing, YIN Yong, JIN Yi-cheng, et al. Determination of maritime search area based on stochastic particle simulation[J]. Navigation of China, 2011, 34(3): 34-39. (in Chinese) doi: 10.3969/j.issn.1000-4653.2011.03.008
    [18] ROHWEDER J J, ROGALA J T, JOHNSON B L, et al. Application of wind fetch and wave models for habitat rehabilitation and enhancement projects[R]. Reston: United States Geological Survey, 2012.
    [19] 何惠明, 董国祥, 蒋永旭. 运输船舶在波浪中失速的近似估算[J]. 上海船舶运输科学研究所学报, 2009, 32(2): 6-9. doi: 10.3969/j.issn.1674-5949.2009.02.002

    HE Hui-ming, DONG Guo-xiang, JIANG Yong-xu. Approximate estimation for ship speed loss in waves[J]. Journal of SSSRI, 2009, 32(2): 6-9. (in Chinese) doi: 10.3969/j.issn.1674-5949.2009.02.002
    [20] 何惠明, 董国祥, 蒋永旭. 85 000 t油轮在波浪中的阻力增加和失速预报[J]. 中国航海, 2011, 34(4): 67-70, 80. doi: 10.3969/j.issn.1000-4653.2011.04.015

    HE Hui-ming, DONG Guo-xiang, JIANG Yong-xu. The study on prediction of added the resistance and speed loss in the wave with 85 000 DWT tank[J]. Navigation of China, 2011, 34(4): 67-70, 80. (in Chinese) doi: 10.3969/j.issn.1000-4653.2011.04.015
    [21] 张进峰, 石志超, 项勇. 寒潮大风浪中船舶失速数值计算[J]. 大连海事大学学报, 2014, 40(2): 39-42. doi: 10.3969/j.issn.1006-7736.2014.02.010

    ZHANG Jin-feng, SHI Zhi-chao, XIANG Yong. Numerical calculation of ship speed loss in rough seas with cold wave[J]. Journal of Dalian Maritime University, 2014, 40(2): 39-42. (in Chinese) doi: 10.3969/j.issn.1006-7736.2014.02.010
    [22] 李金铎, 龙绍桥, 郑锡建. 东海海域渔船无动力漂移试验研究[J]. 渔业现代化, 2011, 38(1): 60-63. doi: 10.3969/j.issn.1007-9580.2011.01.014

    LI Jin-duo, LONG Shao-qiao, ZHENG Xi-jian. Experimental study of fishing boat off-power float in the East China Sea[J]. Fishery Modernization, 2011, 38(1): 60-63. (in Chinese) doi: 10.3969/j.issn.1007-9580.2011.01.014
    [23] 马文耀, 陈达森, 毕修颖. 基于流场数值模拟的遇险目标漂移计算研究[J]. 中国航海技术, 2009, 32(2): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH200902014.htm

    MA Wen-yao, CHEN Da-sen, BI Xiu-ying. Study of distress target drift based on numerical simulation of flow field[J]. Navigation of China, 2009, 32(2): 45-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH200902014.htm
    [24] 翁怡婵, 杨金湘, 江毓武. 台湾海峡漂移物运动轨迹的数值模拟[J]. 厦门大学学报: 自然科学版, 2009, 48(3): 446-449. doi: 10.3321/j.issn:0438-0479.2009.03.030

    WENG Yi-chan, YANG Jin-xiang, JIANG Yu-wu. Simulation of floater trajectory in Taiwan Strait[J]. Journal of Xiamen University (Natural Science), 2009, 48(3): 446-449. (in Chinese) doi: 10.3321/j.issn:0438-0479.2009.03.030
    [25] 李维利. 海上搜救计划的制定[J]. 天津航海, 2013, 127(1): 8-11. doi: 10.3969/j.issn.1005-9660.2013.01.004

    LI Wei-li. Development of a maritime search and rescue plan[J]. Tianjin Hanghai, 2013, 127(1): 8-11. (in Chinese) doi: 10.3969/j.issn.1005-9660.2013.01.004
    [26] 吴翔, 周江华. 海上搜救中发现概率的研究[J]. 中国安全生产科学技术, 2015, 11(1): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201501005.htm

    WU Xiang, ZHOU Jiang-hua. Study on probability of detection in marine search and rescue[J]. Journal of Safety Science and Technology, 2015, 11(1): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201501005.htm
    [27] KENNEDY J, EBERHART R. Particle swarm optimization[C]//IEEE. Proceedings of ICNN95-International Conference on Neural Networks. New York: IEEE, 1995: 1942-1948.
    [28] 黄友能, 宫少丰, 曹源, 等. 基于粒子群算法的城轨列车节能驾驶优化模型[J]. 交通运输工程学报, 2016, 16(2): 118-124, 142. doi: 10.3969/j.issn.1671-1637.2016.02.014

    HUANG You-neng, GONG Shao-feng, CAO Yuan, et al. Optimization model of energy-efficient driving for train in urban rial transit based on particle swarm algorithm[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 118-124, 142. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.02.014
    [29] WANG Gai-ge, GUO Li-hong, GANDOMI A H, et al. Chaotic krill herd algorithm[J]. Information Sciences, 2014, 274: 17-34. doi: 10.1016/j.ins.2014.02.123
    [30] ZITZLER E, DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms: empirical results[J]. Evolutionary computation, 2000, 8(2): 173-195. doi: 10.1162/106365600568202
    [31] MONTGOMERY W D. Markets in licenses and efficient pollution control programs[J]. Journal of Economic Theory, 1972, 5(3): 395-418. doi: 10.1016/0022-0531(72)90049-X
    [32] SCHOOT J R. Fault tolerant design using single and multicriteria genetic algorithm optimization[D]. Cambridge: University of Cambridge, 1995.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  530
  • HTML全文浏览量:  268
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-20
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回