留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自动驾驶环境下驾驶人接管行为结构方程模型

姚荣涵 祁文彦 郭伟伟

姚荣涵, 祁文彦, 郭伟伟. 自动驾驶环境下驾驶人接管行为结构方程模型[J]. 交通运输工程学报, 2021, 21(2): 209-221. doi: 10.19818/j.cnki.1671-1637.2021.02.018
引用本文: 姚荣涵, 祁文彦, 郭伟伟. 自动驾驶环境下驾驶人接管行为结构方程模型[J]. 交通运输工程学报, 2021, 21(2): 209-221. doi: 10.19818/j.cnki.1671-1637.2021.02.018
YAO Rong-han, QI Wen-yan, GUO Wei-wei. Structural equation model of drivers' takeover behaviors in autonomous driving environment[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 209-221. doi: 10.19818/j.cnki.1671-1637.2021.02.018
Citation: YAO Rong-han, QI Wen-yan, GUO Wei-wei. Structural equation model of drivers' takeover behaviors in autonomous driving environment[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 209-221. doi: 10.19818/j.cnki.1671-1637.2021.02.018

自动驾驶环境下驾驶人接管行为结构方程模型

doi: 10.19818/j.cnki.1671-1637.2021.02.018
基金项目: 

国家自然科学基金项目 51578111

中央高校基本科研业务费专项资金项目 DUT20JC40

详细信息
    作者简介:

    姚荣涵(1979-),女,山西运城人,大连理工大学副教授,工学博士,从事间断交通流理论研究

  • 中图分类号: U491.2

Structural equation model of drivers' takeover behaviors in autonomous driving environment

Funds: 

National Natural Science Foundation of China 51578111

Fundamental Research Funds for the Central Universities DUT20JC40

More Information
  • 摘要: 为提取自动驾驶环境下驾驶人接管行为的关键影响因素,使用驾驶模拟器和眼动仪进行自动驾驶环境下驾驶人接管试验;采集了11个受试者对5种接管情境的反应数据,包括车辆运行数据和眼部运动数据,并调查了受试者的个人属性;基于实测数据定性分析和情境差异定量分析的结果,利用AMOS软件建立了描述驾驶人接管行为的结构方程模型;假设纵向接管行为、横向接管行为和眼部运动行为是3个潜在变量,找到可以表征这3个潜在变量的9个观测变量;根据修正指数多次修正得到最终的结构方程模型,由此获得表征驾驶人接管行为的各变量间的关系及对应的参数。研究结果表明:驾驶人接管自动驾驶车辆的全过程可分为5个阶段,即感知反应、减速避让、加速回升、稳定恢复以及稳定运行;当左前方车辆汇入当前车道,此时驾驶人接管风险较高;横向驾驶行为与纵向驾驶行为、眼部运动行为均显著负相关,相关系数分别为-0.226和-0.223,纵向驾驶行为与眼部运动行为正相关,相关系数为0.152;平均速度、总体横摆角均值、一秒内扫视时间可分别高度解释驾驶人接管自动驾驶车辆时纵向、横向及眼部的潜在行为。可见,此模型能有效揭示驾驶人接管自动驾驶车辆的整体行为与局部行为,有助于改进人机交互模式与自动驾驶接管请求提示。

     

  • 图  1  自动驾驶环境下驾驶人接管试验所采用的设备

    Figure  1.  Equipments used for drivers' takeover tests in autonomous driving environment

    图  2  紧急情境的具体场景

    Figure  2.  Specific scenes for emergency scenarios

    图  3  紧急情境的位置

    Figure  3.  Locations of emergency scenarios

    图  4  受试者面对第6次接管事件时速度随行驶距离的变化

    Figure  4.  Variations of speeds with distance when participants dealing with sixth takeover event

    图  5  受试者面对第6次接管事件时转向灯随行驶距离的变化

    Figure  5.  Variations of turn lights with distance when participants dealing with sixth takeover event

    图  6  第9个受试者面对第6次接管事件时接管行为参数随行驶距离的变化

    Figure  6.  Variations of takeover behavior parameters with distance when participant 9 dealing with sixth takeover event

    图  7  结构方程模型路径

    Figure  7.  Paths of structural equation model

    表  1  驾驶人操作输入标准差的单因素方差分析

    Table  1.   ANOVA of standard deviations for drivers' operation inputs

    紧急情境 样本量 加速输入标准差 制动输入标准差 转向盘输入标准差 转向盘旋转率标准差
    均值 F检验值 p 均值 F检验值 p 均值 F检验值 p 均值 F检验值 p
    情境1 18 0.200 3.551 0.010 0.030 4.410 0.003 0.022 2.808 0.031 0.239 1.894 0.119
    情境2 36 0.247 0.070 0.020 0.219
    情境3 18 0.252 0.042 0.017 0.191
    情境4 9 0.166 0.019 0.023 0.168
    情境5 9 0.261 0.055 0.012 0.126
    总计 90 0.232 0.050 0.019 0.203
    下载: 导出CSV

    表  2  驾驶人眼部运动指标的单因素方差分析

    Table  2.   ANOVA of drivers' eye movement indicators

    组别 样本量 左右眼瞳孔直径均值/mm 一秒内平均注视时间/s 一秒内平均扫视时间/s 每分钟眨眼次数
    均值 F检验值 p 均值 F检验值 p 均值 F检验值 p 均值 F检验值 p
    按情境分组 1 18 4.359 0.474 0.755 0.770 2.075 0.091 0.080 1.724 0.152 11.330 1.692 0.159
    2 36 4.323 0.790 0.091 12.110
    3 18 4.341 0.787 0.100 9.670
    4 9 4.272 0.682 0.079 19.330
    5 9 4.154 0.693 0.115 9.000
    总计 90 4.312 0.765 0.092 11.880
    按受试者分组 1 10 4.617 60.686 0.000 0.847 4.678 0.000 0.085 13.930 0.000 2.800 14.331 0.000
    2 10 3.800 0.739 0.088 10.000
    3 10 4.555 0.830 0.076 21.100
    4 10 4.291 0.730 0.095 11.800
    6 10 4.553 0.759 0.076 8.700
    7 10 4.935 0.828 0.102 8.600
    9 10 3.855 0.823 0.143 2.200
    10 10 4.187 0.734 0.125 14.300
    11 10 4.016 0.596 0.033 27.400
    总计 90 4.312 0.765 0.092 11.880
    下载: 导出CSV

    表  3  观测变量与潜在变量及其关系

    Table  3.   Observed and latent variables and their relationships

    潜在变量 观测变量
    纵向接管行为(Y1) 总接管时间(X1)
    平均速度(X2)
    制动标准差(X3)
    横向接管行为(Y2) 总体横摆角均值(X4)
    转向盘标准差(X5)
    左转横摆角均值(X6)
    眼部运动行为(Y3) 一秒内扫视时间(X7)
    每秒眨眼次数(X8)
    总扫视时间(X9)
    下载: 导出CSV

    表  4  驾驶人接管行为量表

    Table  4.   Scales of drivers' takeover behaviors

    编号 观测变量
    X1 X2 X3 X4 X5 X6 X7 X8 X9
    1 3 5 2 2 2 2 4 1 3
    2 3 5 2 2 2 2 4 1 3
    3 3 5 2 2 2 2 4 1 3
    4 2 5 1 3 2 3 3 1 2
    5 2 5 1 3 2 3 3 1 2
    6 2 5 1 3 2 3 3 1 2
    7 1 5 1 4 3 4 2 1 1
    下载: 导出CSV

    表  5  信度与效度检验

    Table  5.   Reliability and validity tests

    检验项目 检验值
    克隆巴赫系数 Y1为0.751, Y2为0.749, Y3为0.739
    KMO取样适切性量数 0.605
    巴特利特球度检验 近似卡方 598.968
    自由度 36
    显著性 0.000
    下载: 导出CSV

    表  6  结构方程模型的拟合指标

    Table  6.   Fitting indicators of structural equation model

    拟合指标 判断准则 拟合值
    卡方检验的显著性概率值 >0.05 0.458
    卡方与自由度的比值 < 3 1.000
    适配度指数 >0.9 0.978
    调整后的适配度指数 >0.8 0.950
    残差均方和平方根 < 0.08 0.059
    渐进残差均方和平方根 < 0.08 0.001
    规准适配指数 >0.8 0.922
    增值适配指数 >0.9 1.000
    比较适配指数 >0.9 1.000
    下载: 导出CSV

    表  7  驾驶人接管行为测量模型的因子载荷

    Table  7.   Factor loads of drivers' takeover behaviors obtained by measurement model

    潜在变量 观测变量 标准化路径系数
    Y1 X1 0.559
    X2 -0.878
    X3 0.749
    Y2 X4 0.941
    X5 0.569
    X6 0.727
    Y3 X7 0.859
    X8 -0.499
    X9 0.818
    下载: 导出CSV

    表  8  驾驶人接管行为潜在变量间的路径系数

    Table  8.   Path coefficients among latent variables for drivers' takeover behaviors

    潜在变量之间的关系 标准化路径系数 p
    Y1Y3 0.152 0.111
    Y3Y2 -0.226 0.012
    Y1Y2 -0.223 0.016
    下载: 导出CSV

    表  9  驾驶人接管行为观测变量间的路径系数

    Table  9.   Path coefficients among observed variables for drivers' takeover behaviors

    观测变量之间的关系 标准化路径系数 p
    X7影响X6 0.228 0.000
    X4影响X3 0.248 0.000
    下载: 导出CSV

    表  10  驾驶人接管行为观测变量残差项间的协方差

    Table  10.   Covariances among residuals of observed variables for drivers' takeover behaviors

    残差项之间的关系 协方差 p
    e1e5 -0.394 0.000
    e1e9 0.252 0.005
    下载: 导出CSV
  • [1] SAE International. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles[R]. New York: SAE International, 2018.
    [2] LU Zhen-ji, HAPPER R, CABRALL C D D, et al. Human factors of transitions in automated driving: a general framework and literature survey[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 43: 183-198. doi: 10.1016/j.trf.2016.10.007
    [3] 吴超仲, 吴浩然, 吕能超. 人机共驾智能汽车的控制权切换与安全性综述[J]. 交通运输工程学报, 2018, 18(6): 131-141. doi: 10.3969/j.issn.1671-1637.2018.06.014

    WU Chao-zhong, WU Hao-ran, LYU Neng-chao. Review of control switch and safety of human-computer driving intelligent vehicle[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 131-141. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.06.014
    [4] ERIKSSON A, BANKS V A, STANTON N A. Transition to manual: comparing simulator with on-road control transitions[J]. Accident Analysis and Prevention, 2017, 102: 227-234. doi: 10.1016/j.aap.2017.03.011
    [5] GOLD C, DAMBÖCK D, LORENZ L, et al. "Take over!" How long does it take to get the driver back into the loop?[C]// HFES. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. New York: SAGE Publications, 2013: 1938-1942.
    [6] FORSTER Y, NAUJOKS F, NEUKUM A, et al. Driver compliance to take-over requests with different auditory outputs in conditional automation[J]. Accident Analysis and Prevention, 2017, 109: 18-28. doi: 10.1016/j.aap.2017.09.019
    [7] 张泽权. 自动驾驶接管中的触觉显示系统设计研究[D]. 广州: 华南理工大学, 2019.

    ZHANG Ze-quan. Study on the vibrotactile displays system of take-over requests for automated driving[D]. Guangzhou: South China University of Technology, 2019. (in Chinese)
    [8] YOON S H, KIM Y W, JI Y G. The effects of takeover request modalities on highly automated car control transitions[J]. Accident Analysis and Prevention, 2019, 123: 150-158. doi: 10.1016/j.aap.2018.11.018
    [9] 钮建伟, 张雪梅, 孙一品, 等. 险情中驾驶人接管自动驾驶车辆的驾驶行为研究[J]. 中国公路学报, 2018, 31(6): 272-280. doi: 10.3969/j.issn.1001-7372.2018.06.014

    NIU Jian-wei, ZHANG Xue-mei, SUN Yi-pin, et al. Analysis of driving behavior during the takeover of automatic driving vehicles in dangerous traffic situations[J]. China Journal of Highway and Transport, 2018, 31(6): 272-280. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.06.014
    [10] WAN Jing-yan, WU Chang-xu. The effects of lead time of take-over request and nondriving tasks on taking-over control of automated vehicles[J]. IEEE Transactions on Human-Machine Systems, 2018, 48(6): 582-591. doi: 10.1109/THMS.2018.2844251
    [11] KIM J, KIM H S, KIM W, et al. Take-over performance analysis depending on the drivers' non-driving secondary tasks in automated vehicles[C]//IEEE. 9th International Conference on Information and Communication Technology Convergence: ICT Convergence Powered by Smart Intelligence. New York: IEEE, 2018: 1364-1366.
    [12] WANDTNER B, SCHMIDT G, SCHOEMIG N, et al. Non-driving related tasks in highly automated driving-effects of task modalities and cognitive workload on take-over performance[C]//Automotive Meets Electronics. 9th GMM Symposium Automotive meets Electronics. New York: VDE Verlag GmbH, 2018: 1-6.
    [13] ERIKSSON A, PETERMEIJER S M, ZIMMERMANN M, et al. Rolling out the red (and green) carpet: supporting driver decision making in automation-to-manual transitions[J]. IEEE Transactions on Human-Machine Systems, 2018, 49(1): 20-31. http://ieeexplore.ieee.org/document/8594655/
    [14] WANG Jiao, SÖFFKER D. Bridging gaps among human, assisted, and automated driving with DVIs: a conceptional experimental study[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(6): 2096-2108. http://ieeexplore.ieee.org/document/8428654/
    [15] KÖRBER M, GOLD C, LECHNER D, et al. The influence of age on the take-over of vehicle control in highly automated driving[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 39: 19-32. doi: 10.1016/j.trf.2016.03.002
    [16] GOLD C, KÖRBER M, HOHENBERGER C, et al. Trust in automation-before and after the experience of take-over scenarios in a highly automated vehicle[J]. Procedia Manufacturing, 2015, 3: 3025-3032. doi: 10.1016/j.promfg.2015.07.847
    [17] KÖRBER M, CINGEL A, ZIMMERMANN M, et al. Vigilance decrement and passive fatigue caused by monotony in automated driving[J]. Procedia Manufacturing, 2015, 3: 2403-2409. doi: 10.1016/j.promfg.2015.07.499
    [18] WU Yan-bin, KIHARA K, TAKEDA Y, et al. Effects of scheduled manual driving on drowsiness and response to take over request: a simulator study towards understanding drivers in automated driving[J]. Accident Analysis and Prevention, 2019, 124: 202-209. doi: 10.1016/j.aap.2019.01.013
    [19] 徐超. 基于虚拟驾驶的切换型人机共驾行为评价[D]. 长春: 吉林大学, 2018.

    XU Chao. Evaluation of cooperative driving behavior based on the virtual driving[D]. Changchun: Jilin University, 2018. (in Chinese)
    [20] GOLD C, HAPPEE R, BENGLER K. Modeling take-over performance in level 3 conditionally automated vehicles[J]. Accident Analysis and Prevention, 2018, 116: 3-13. doi: 10.1016/j.aap.2017.11.009
    [21] XIE Guo-tao, GAO Hong-bo, HUANG Bin, et al. A driving behavior awareness model based on a dynamic Bayesian network and distributed genetic algorithm[J]. International Journal of Computational Intelligence Systems, 2018, 11(1): 469-482. doi: 10.2991/ijcis.11.1.35
    [22] ZHANG Li, YU Gui-zhen, ZHOU Bin, et al. Detection algorithm of takeover behavior of automatic vehicles' drivers based on deep learning[C]//IEEE. 4th International Conference on Intelligent Transportation Engineering. New York: IEEE, 2019: 126-130.
    [23] 仲任. 基于SEM的公路货运平台溢出效应研究[D]. 南昌: 华东交通大学, 2019.

    ZHONG Ren. Research on spillover effect of highway freight platform based on SEM[D]. Nanchang: East China Jiaotong University, 2019. (in Chinese)
    [24] 卞玉梅. 结构方程模型研究及其应用[D]. 大连: 大连海事大学, 2017.

    BIAN Yu-mei. Research and application of structural equation model[D]. Dalian: Dalian Maritime University, 2017. (in Chinese)
    [25] HASSAN H M. Investigation of the self-reported aberrant driving behavior of young male Saudi drivers: a survey-based study[J]. Journal of Transportation Safety and Security, 2016, 8(2): 113-128. doi: 10.1080/19439962.2015.1017782
    [26] 刘玲莉, 田东东, 王子越. 私家车驾驶员驾驶行为与人格特质的关系研究[J]. 中国安全科学学报, 2019, 29(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201901003.htm

    LIU Ling-li, TIAN Dong-dong, WANG Zi-yue. Study on relationships between driving behavior of private car drivers and their personality traits[J]. China Safety Science Journal, 2019, 29(1): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201901003.htm
    [27] 杨丽平. 基于人格特质的驾驶人换道行为及决策过程研究[D]. 合肥: 合肥工业大学, 2018.

    YANG Li-ping. A study on drivers' lane-changing behavior and decision-making process based on personality traits[D]. Hefei: Hefei University of Technology, 2018. (in Chinese)
    [28] 秦雅琴, 张静, 贾现广, 等. 基于SEM的双车道公路超车行为安全评价[J]. 安全与环境学报, 2017, 17(4): 1359-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201704032.htm

    QIN Ya-qin, ZHANG Jing, JIA Xian-guang, et al. Safety evaluation for the overtaking behavior on the two-lane highway based on the structural equation model[J]. Journal of Safety and Environment, 2017, 17(4): 1359-1364. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201704032.htm
    [29] 文江辉, 郭浩, 吴超仲, 等. 基于结构方程模型的疲劳驾驶行为影响因素间量化关系研究[J]. 交通信息与安全, 2014, 32(5): 95-102. doi: 10.3963/j.issn.1674-4861.2014.05.017

    WEN Jiang-hui, GUO Hao, WU Chao-zhong, et al. Quantitative relationship between influencing factors of fatigue driving behavior based on structural equation model[J]. Journal of Transport Information and Safety, 2014, 32(5): 95-102. (in Chinese) doi: 10.3963/j.issn.1674-4861.2014.05.017
    [30] 温忠麟, 侯杰泰, 马什赫伯特. 结构方程模型检验: 拟合指数与卡方准则[J]. 心理学报, 2004, 2(9): 186-194. https://www.cnki.com.cn/Article/CJFDTOTAL-XLXB200402009.htm

    WEN Zhong-lin, HAU Kit-tai, MARSH H W. Structural equation model testing: cutoff criteria for goodness of fit indices and chi-square test[J]. Acta Psychologica Sinica, 2004, 2(9): 186-194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XLXB200402009.htm
  • 加载中
图(7) / 表(10)
计量
  • 文章访问数:  924
  • HTML全文浏览量:  324
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回