留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进YOLO v3模型与Deep-SORT算法的道路车辆检测方法

马永杰 马芸婷 程时升 马义德

马永杰, 马芸婷, 程时升, 马义德. 基于改进YOLO v3模型与Deep-SORT算法的道路车辆检测方法[J]. 交通运输工程学报, 2021, 21(2): 222-231. doi: 10.19818/j.cnki.1671-1637.2021.02.019
引用本文: 马永杰, 马芸婷, 程时升, 马义德. 基于改进YOLO v3模型与Deep-SORT算法的道路车辆检测方法[J]. 交通运输工程学报, 2021, 21(2): 222-231. doi: 10.19818/j.cnki.1671-1637.2021.02.019
MA Yong-jie, MA Yun-ting, CHENG Shi-sheng, MA Yi-de. Road vehicle detection method based on improved YOLO v3 model and deep-SORT algorithm[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 222-231. doi: 10.19818/j.cnki.1671-1637.2021.02.019
Citation: MA Yong-jie, MA Yun-ting, CHENG Shi-sheng, MA Yi-de. Road vehicle detection method based on improved YOLO v3 model and deep-SORT algorithm[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 222-231. doi: 10.19818/j.cnki.1671-1637.2021.02.019

基于改进YOLO v3模型与Deep-SORT算法的道路车辆检测方法

doi: 10.19818/j.cnki.1671-1637.2021.02.019
基金项目: 

国家自然科学基金项目 62066041

详细信息
    作者简介:

    马永杰(1967-), 男, 西北师范大学教授, 工学博士, 从事图像处理、人工智能、测控技术等研究

  • 中图分类号: U491.2

Road vehicle detection method based on improved YOLO v3 model and deep-SORT algorithm

Funds: 

National Natural Science Foundation of China 62066041

More Information
  • 摘要: 针对道路车辆实时检测遮挡严重与小目标车辆漏检率高的问题,提出了基于改进YOLO v3模型和Deep-SORT算法的车辆检测方法;为提高模型对道路车辆的检测能力,采用K-means++聚类算法对目标候选框进行聚类分析,选择合适的Anchor box数量,并在网络浅层增加了特征提取层,可提取到更精细的车辆特征;为加强网络对远近不同目标的鲁棒性,在保留原YOLO v3模型输出层的同时,增加了一层输出层,将52像素×52像素输出特征图经过上采样后得到104像素×104像素特征图,并将其与浅层同尺寸特征图进行拼接,实现车辆目标的检测;为了降低目标遮挡对检测效果的影响,提高对视频上下帧之间关联信息的关注度,将改进YOLO v3模型和Deep-SORT算法相结合,以此来弥补两者之间的不足。试验结果表明:改进YOLO v3模型有效地提高了车辆检测的性能,与在网络浅层增加特征提取层的模型相比,平均精度提高了1.4%,与增加一层输出层的模型相比,平均精确度提高了0.8%,说明改进YOLO v3模型提取的特征表达能力更强,增强了网络对小目标的检测能力;改进YOLO v3模型在引入Deep-SORT算法后,查准率和召回率分别达到90.16%和91.34%,相比改进YOLO v3模型,查准率和召回率分别提高了1.48%和4.20%,同时保证了检测速度,对于不同大小目标的检测具有良好的鲁棒性。

     

  • 图  1  YOLO v3网络模型结构

    Figure  1.  YOLO v3 network model structure

    图  2  改进的YOLO v3模型网络结构

    Figure  2.  Improved YOLO v3 model network structure

    图  3  基于改进YOLO v3模型结合Deep-SORT算法的检测方法

    Figure  3.  Detection method of improved YOLO v3 model combined with deep-SORT algorithm

    图  4  K-means++ 聚类算法分析曲线

    Figure  4.  Analysis curve of K-means++ clustering algorithm

    图  5  同一视频的部分检测结果对比

    Figure  5.  Comparison of partial detection results of same video

    表  1  网络训练参数设置

    Table  1.   Network training parameter settings

    名称 参数
    训练样本数量 32
    权重衰减系数 0.000 5
    学习速率变化因子 0.9
    模型最大迭代次数 30 000
    初始学习率 0.001
    下载: 导出CSV

    表  2  改进YOLO v3模型与YOLO v3模型性能比较

    Table  2.   Performance comparison between improved YOLO v3 and YOLO v3 model

    模型 平均精确度/% 每秒检测帧数
    YOLO v3 82.7 39
    对比模型1 84.1 33
    对比模型2 83.5 36
    改进YOLO v3 85.4 32
    下载: 导出CSV

    表  3  检测方法性能比较

    Table  3.   Performance comparison of detection methods

    方法 实际车辆数 正确检测数量 误检数量 漏检数量 p/% r/%
    改进YOLO v3模型 163 142 18 21 88.68 87.14
    改进YOLO v3模型+Deep-SORT算法 163 149 16 14 90.16 91.34
    下载: 导出CSV

    表  4  与其他检测方法对比

    Table  4.   Comparison with other detection methods

    方法 p/% r/% 每秒检测帧数
    Liu等[23]的检测方法 78.92 79.56 35
    王宇宁等[32]的检测方法 89.30 81.03 60
    改进YOLO v3模型+Deep-SORT算法 90.16 91.34 38
    下载: 导出CSV
  • [1] KACHACH R, CAÑAS J M. Hybrid three-dimensional and support vector machine approach for automatic vehicle tracking and classification using a single camera[J]. Journal of Electronic Imaging, 2016, 25(3): 033021. doi: 10.1117/1.JEI.25.3.033021
    [2] DANELLJAN M, HAGER G, KHAN F, et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1561-1575. doi: 10.1109/TPAMI.2016.2609928
    [3] WEI Yun, TIAN Qing, GUO Jian-hua, et al. Multi-vehicle detection algorithm through combining Harr and HOG features[J]. Mathematics and Computers in Simulation, 2019, 155: 130-145. doi: 10.1016/j.matcom.2017.12.011
    [4] 杨娟, 曹浩宇, 汪荣贵, 等. 基于语义DCNN特征融合的细粒度车型识别模型[J]. 计算机辅助设计与图形学学报, 2019, 31(1): 141-157. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201901018.htm

    YANG Juan, CAO Hao-yu, WANG Rong-gui, et al. Fine-grained car recognition model based on semantic DCNN features fusion[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(1): 141-157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201901018.htm
    [5] 余烨, 傅云翔, 杨昌东, 等. 基于FR-ResNet的车辆型号精细识别研究[J/OL]. 自动化学报, (2019-04-03)[2020-12-22]. DOI: 10.16383/j.aas.c180539.

    YU Ye, FU Yun-xiang, YANG Chang-dong, et al. Fine-grained car model recognition based on FR-ResNet[J/OL]. Acta Automatica Sinica, (2019-04-03)[2020-12-22]. DOI: 10.16383/j.aas.c180539.(in Chinese)
    [6] 凌艳, 陈莹. 多尺度上下文信息增强的显著目标检测全卷积网络[J]. 计算机辅助设计与图形学学报, 2019, 31(11): 2007- 2016. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201911015.htm

    LING Yan, CHEN Ying. Salient object detection with multiscale context enhanced fully convolution network[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(11): 2007-2016. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201911015.htm
    [7] 鞠默然, 罗海波, 王仲博, 等. 改进的YOLO v3算法及其在小目标检测中的应用[J]. 光学学报, 2019, 39(7): 253-260. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201907028.htm

    JU Mo-ran, LUO Hai-bo, WANG Zhong-bo, et al. Improved YOLO v3 algorithm and its application in small target detection[J]. Acta Optica Sinica, 2019, 39(7): 253-260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201907028.htm
    [8] LI Su-hao, LIN Jin-zhao, LI Guo-quan, et al. Vehicle type detection based on deep learning in traffic scene[J]. Procedia Computer Science, 2018, 131: 564-572. doi: 10.1016/j.procs.2018.04.281
    [9] 曹磊, 王强, 史润佳, 等. 基于改进RPN的Faster-RCNN网络SAR图像车辆目标检测方法[J]. 东南大学学报(自然科学版), 2021, 51(1): 87-91.

    CAO Lei, WANG Qiang, SHI Run-jia, et al. Method for vehicle target detection on SAR image based on improved RPN in Faster-RCNN[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(1): 87-91. (in Chinese)
    [10] 李琳辉, 伦智梅, 连静, 等. 基于卷积神经网络的道路车辆检测方法[J]. 吉林大学学报(工学版), 2017, 47(2): 384-391. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201702006.htm

    LI Lin-hui, LUN Zhi-mei, LIAN Jing, et al. Convolution neural network-based vehicle detection method[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(2): 384-391. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201702006.htm
    [11] LEE W J, DONG S P, DONG W K, et al. A vehicle detection using selective multi-stage features in convolutional neural networks[C]//IEEE. 17th International Conference on Control, Automation and Systems. New York: IEEE, 2017: 1-3.
    [12] ALIREZA A, LUIS G, CRISTIANO P, et al. Multimodal vehicle detection: fusing 3D-LIDAR and color camera data[J]. Pattern Recognition Letters, 2018, 115: 20-29. doi: 10.1016/j.patrec.2017.09.038
    [13] DAI Xue-rui. HybridNet: a fast vehicle detection system for autonomous driving[J]. Signal Processing: Image Communication, 2019, 70: 79-88. doi: 10.1016/j.image.2018.09.002
    [14] LUO Ji-qing, FANG Hu-sheng, SHAO Fa-ming, et al. Multi-scale traffic vehicle detection based on faster R-CNN with NAS optimization and feature enrichment[J]. Defence Technology, 2021, DOI: 10.1016/j.dt.2020.10.006.
    [15] 邹伟, 殷国栋, 刘昊吉, 等. 基于多模态特征融合的自主驾驶车辆低辨识目标检测方法[J/OL]. 中国机械工程, (2020-06-24)[2020-12-22]. https://kns.cnki.net/kcms/detail/42.1294.TH.20200624.1308.008.html.

    ZOU Wei, YIN Guo-dong, LIU Hao-ji, et al. Low-observable targets detection method for autonomous vehicles based on multi-modal feature fusion[J/OL]. China Mechanical Engineering, (2020-06-24)[2020-12-22]. https://kns.cnki.net/kcms/detail/42.1294.TH.20200624.1308.008.html. (in Chinese)
    [16] 汪昱东, 郭继昌, 王天保. 一种改进的雾天图像行人和车辆检测算法[J]. 西安电子科技大学学报, 2020, 47(4): 70-77. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD202004013.htm

    WANG Yu-dong, GUO Ji-chang, WANG Tian-bao. Algorithm for foggy-image pedestrian and vehicle detection[J]. Journal of Xidian University, 2020, 47(4): 70-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD202004013.htm
    [17] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE. 27th IEEE Conference on Computer Vision and Pattern Recognition, New York: IEEE, 2014: 580-587.
    [18] GIRSHICK R. Fast R-CNN[C]//IEEE. 15th IEEE International Conference on Computer Vision, New York: IEEE, 2015: 1440-1448.
    [19] REN Shao-qing, HE Kai-ming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [20] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition, New York: IEEE, 2016: 779-788.
    [21] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 6517-6525.
    [22] REDMON J, FARHADI A. YOLOv3: an incremental improvement[R]. Ithaca: Cornell University, 2018.
    [23] LIU WEI, ANGUELOV D, ERHAN D, et al. SSD: single shotmultibox detector[C]//Springer. 14th European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [24] 周苏, 支雪磊, 林飞滨, 等. 基于车载视频图像的车辆检测与跟踪算法[J]. 同济大学学报(自然科学版), 2019, 47(S1): 191-198. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ2019S1036.htm

    ZHOU Su, ZHI Xue-lei, LIN Fei-bin, et al. Research on vehicle detection and tracking algorithm based on onboard video images[J]. Journal of Tongji University (Natural Science Edition), 2019, 47(S1): 191-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ2019S1036.htm
    [25] 金立生, 郭柏苍, 王芳荣, 等. 基于改进YOLOv3的车辆前方动态多目标检测算法[J/OL]. 吉林大学学报(工学版), (2020-12-17)[2020-12-22]. https://doi.org/10.13229/j.cnki.jdxbgxb20200588.

    JIN Li-sheng, GUO Bai-cang, WANG Fang-rong. Dynamic multiple object algorithm for vehicle forward based on improved YOLOv3[J/OL]. Journal of Jilin University (Engineering and Technology Edition), (2020-12-17)[2020-12-22]. https://doi.org/10.13229/j.cnki.jdxbgxb20200588. (in Chinese)
    [26] 李珣, 刘瑶, 李鹏飞, 等. 基于Darknet框架下YOLO v2算法的车辆多目标检测方法[J]. 交通运输工程学报, 2018, 18(6): 142-158. doi: 10.3969/j.issn.1671-1637.2018.06.015

    LI Xun, LIU Yao, LI Peng-fei, et al. Vehicle multi-target detection method based on YOLO v2 algorithm under darknet framework[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 142-158. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.06.015
    [27] 黎洲, 黄妙华. 基于YOLO_v2模型的车辆实时检测[J]. 中国机械工程, 2018, 29(15): 1869-1874. doi: 10.3969/j.issn.1004-132X.2018.15.015

    LI Zhou, HUANG Miao-hua. Vehicle detections based on YOLO_v2 in real-time[J]. China Mechanical Engineering, 2018, 29(15): 1869-1874. (in Chinese) doi: 10.3969/j.issn.1004-132X.2018.15.015
    [28] 刘军, 后士浩, 张凯, 等. 基于增强Tiny YOLOV3算法的车辆实时检测与跟踪[J]. 农业工程学报, 2019, 35(8): 118-125. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201908014.htm

    LIU Jun, HOU Shi-hao, ZHANG Kai, et al. Real-time vehicle detection and tracking based on enhanced Tiny YOLOV3 algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 118-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201908014.htm
    [29] SRI J S, ESTHER R P. Little YOLO-SPP: a delicate real-time vehicle detection algorithm[J]. Optik, 2021, 225: 165818. doi: 10.1016/j.ijleo.2020.165818
    [30] 柳长源, 王琪, 毕晓君. 多目标小尺度车辆目标检测方法的研究[J/OL]. 控制与决策, (2020-09-03)[2020-12-22]. https://doi.org/10.13195/j.kzyjc.2020.0635.

    LIU Chang-yuan, WANG Qi, BI Xiao-juan. Research on multi-target and small-scale vehicle target detection method[J/OL]. Control and Decision, (2020-09-03)[2020-12-22]. https://doi.org/10.13195/j.kzyjc.2020.0635. (in Chinese)
    [31] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Springer. 13th European Conference on Computer Vision, 2014. Berlin: Springer, 2014: 740-755.
    [32] 王宇宁, 庞智恒, 袁德明. 基于YOLO算法的车辆实时检测[J]. 武汉理工大学学报, 2016, 38(10): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201610009.htm

    WANG Yu-ning, PANG Zhi-heng, YUAN De-ming. Vehicle detection based on YOLO in real time[J]. Journal of Wuhan University of Technology, 2016, 38(10): 42-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201610009.htm
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1237
  • HTML全文浏览量:  583
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-23
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回