留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于半监督极限学习机的隧道内车辆RSSI定位方法

林永杰 黄紫林 吴攀 许伦辉

林永杰, 黄紫林, 吴攀, 许伦辉. 基于半监督极限学习机的隧道内车辆RSSI定位方法[J]. 交通运输工程学报, 2021, 21(2): 243-255. doi: 10.19818/j.cnki.1671-1637.2021.02.021
引用本文: 林永杰, 黄紫林, 吴攀, 许伦辉. 基于半监督极限学习机的隧道内车辆RSSI定位方法[J]. 交通运输工程学报, 2021, 21(2): 243-255. doi: 10.19818/j.cnki.1671-1637.2021.02.021
LIN Yong-jie, HUANG Zi-lin, WU Pan, XU Lun-hui. RSSI positioning method of vehicles in tunnels based on semi-supervised extreme learning machine[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 243-255. doi: 10.19818/j.cnki.1671-1637.2021.02.021
Citation: LIN Yong-jie, HUANG Zi-lin, WU Pan, XU Lun-hui. RSSI positioning method of vehicles in tunnels based on semi-supervised extreme learning machine[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 243-255. doi: 10.19818/j.cnki.1671-1637.2021.02.021

基于半监督极限学习机的隧道内车辆RSSI定位方法

doi: 10.19818/j.cnki.1671-1637.2021.02.021
基金项目: 

国家自然科学基金项目 61903145

广州市科技计划项目 201803030045

广东省科技创新战略专项资金项目 pdjh2020a0030

详细信息
    作者简介:

    林永杰(1987-), 男, 山东诸城人, 华南理工大学讲师, 工学博士, 从事交通检测及控制研究

    通讯作者:

    黄紫林(1995-), 男, 广东惠州人, 华南理工大学工学硕士研究生

  • 中图分类号: U491.31

RSSI positioning method of vehicles in tunnels based on semi-supervised extreme learning machine

Funds: 

National Natural Science Foundation of China 61903145

Science and Technology Planning Project of Guangzhou 201803030045

Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province pdjh2020a0030

More Information
  • 摘要: 为了提高公路隧道突发事件的判别效率,实现道路交通状态全天候监测,以智能公路上泛在无线传感网络为基础,研究了基于信号强度指示值(RSSI)的网联车辆定位问题;考虑到隧道内车辆的连续运动特性,提出了一种带有局部线性嵌入(LLE)算法的半监督极限学习机(SSELM)实现RSSI指纹定位;离线阶段利用LLE对少量已标记位置的RSSI样本和大量无标记样本进行降维处理,辨识表征目标位置信息的高维数据对应的低维流形,再基于改进的半监督学习拟合降维后的RSSI与位置的映射关系;在线阶段将实时采集的RSSI数据进行流形降维后,输入校准好的SSELM中估计目标位置;采用无迹卡尔曼滤波平滑估计位置。试验结果表明:相比于已有半监督学习算法,提出的方法在不同车辆行驶速度和部署间距下均能取得较优的定位性能;当已标记数据占比(减少了50%~90%)、未标记数据数量(0~1 000个)和检测器部署间距(10~25 m)等关键指标变化后,本文方法的定位性能仍然保持最佳,其平均误差最低为3.09 m;计算复杂度上,当已标记数据为30%,即仅采集96个参考点样本时,其平均定位误差为3.8 m,训练时间低至8.7 s。可见,带有局部线性嵌入算法的半监督极限学习机在稀疏或密集传感器部署环境中,对不同行驶速度的车辆均能提供理想的定位性能,且训练时间短、样本依赖性低,是进行隧道内网联车辆辅助定位的一种有效方法。

     

  • 图  1  基于RSSI指纹定位方法的基本系统结构

    Figure  1.  Basic system structure based on RSSI fingerprint positioning method

    图  2  基于SDR-ELM算法的车辆定位流程

    Figure  2.  Vehicle positioning process based on SDR-ELM algorithm

    图  3  SDR-ELM算法的基本框架

    Figure  3.  Basic framework of SDR-ELM algorithm

    图  4  四类方法在不同场景下的定位误差累积概率分布

    Figure  4.  Cumulative probability distributions of positioning errors of four methods under different scenarios

    图  5  AP部署间距对4类方法定位误差的影响

    Figure  5.  Impacts of AP deploy distance on positioning errors of four methods

    图  6  已标记数据占比对定位误差的影响

    Figure  6.  Impacts of percentage of marked data on positioning error

    图  7  未标记数据个数对定位误差的影响

    Figure  7.  Impacts of numbers of unmarked data on positioning error

    图  8  AP部署间距对置信概率的影响

    Figure  8.  Impacts of AP deploy distance on confidence probability

    图  9  四类方法的训练时间

    Figure  9.  Training times of four methods

    图  10  本征维数对定位误差的影响

    Figure  10.  Impact of intrinsic dimension on positioning error

    图  11  其他参数对定位误差的影响

    Figure  11.  Impacts of other parameters on positioning errors

    表  1  四类方法的性能对比

    Table  1.   Performance comparison of four methods  m

    方法 指标
    KNN算法 SSELM算法 PCA-SSELM算法 本文方法
    场景a 平均定位误差 4.74 5.73 4.02 3.09
    最大误差 11.10 14.80 14.00 10.11
    最小误差 1.80 1.00 0.10 0.25
    误差中值 2.39 3.67 3.51 2.26
    场景b 平均定位误差 5.14 5.60 4.84 3.38
    最大误差 14.27 13.76 12.00 11.80
    最小误差 1.04 2.06 1.00 0.19
    误差中值 3.38 3.22 3.10 2.82
    场景c 平均定位误差 5.42 5.62 4.64 4.06
    最大误差 11.10 12.00 15.00 14.00
    最小误差 1.80 1.80 1.00 0.34
    误差中值 3.67 2.81 3.80 2.39
    场景d 平均定位误差 5.31 7.02 5.11 4.88
    最大误差 11.00 16.12 15.00 14.00
    最小误差 1.80 1.80 1.00 1.80
    误差中值 3.44 4.10 4.98 3.22
    下载: 导出CSV

    表  2  四类方法在真实隧道内平均定位误差对比

    Table  2.   Comparison of four methods for average positioning errors in field tunnel  m

    测试点 方法
    KNN SSELM PCA-SSELM 本文方法
    1 13.01 11.10 4.05 5.79
    2 12.11 7.01 15.20 13.87
    3 6.18 17.00 11.48 11.10
    4 3.64 8.02 5.04 4.09
    5 7.02 8.03 6.10 5.24
    6 10.31 11.51 10.03 8.15
    平均定位误差 8.70 10.45 8.65 8.04
    下载: 导出CSV
  • [1] 杜志刚, 倪玉丹, 杨理波, 等. 高速公路隧道曲线路段视线诱导设施有效性试验[J]. 交通运输工程学报, 2020, 20(1): 215-225. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001021.htm

    DU Zhi-gang, NI Yu-dan, YANG Li-bo, et al. Effectiveness experiment of sight induction facilities of curve sections in highway tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 215-225. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001021.htm
    [2] 赵跃峰, 张生瑞, 马壮林. 基于部分优势比的公路隧道交通事故严重程度分析模型[J]. 中国公路学报, 2018, 31(9): 159-166. doi: 10.3969/j.issn.1001-7372.2018.09.018

    ZHAO Yue-feng, ZHANG Sheng-rui, MA Zhuang-lin. Analysis of traffic accident severity on highway tunnels using the partial proportion odds model[J]. China Journal of Highway and Transport, 2018, 31(9): 159-166. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.09.018
    [3] 黄合来, 罗启章, 彭韵颖, 等. 山区高速公路隧道群路段危化品运输风险评价体系研究[J]. 中南大学学报(自然科学版), 2018, 49(8): 2107-2114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201808034.htm

    HUANG He-lai, LUO Qi-zhang, PENG Yun-ying, et al. Risk evaluation for hazardous chemicals transportation at mountainous freeway with tunnels groups[J]. Journal of Central South University (Science and Technology), 2018, 49(8): 2107-2114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201808034.htm
    [4] MENG Qiang, QU Xiao-bo. Estimation of rear-end vehicle crash frequencies in urban road tunnels[J]. Accident Analysis and Prevention, 2012, 48: 254-263. doi: 10.1016/j.aap.2012.01.025
    [5] 交通运输部综合规划司. 2019年交通运输行业发展统计公报[R]. 北京: 交通运输部综合规划司, 2020.

    Department of Comprehensive Planning, Ministry of Transport. Transportation development statistics bulletin in 2019[R]. Beijing: Department of Comprehensive Planning, Ministry of Transport, 2020. (in Chinese)
    [6] 马壮林, 邵春福, 胡大伟, 等. 高速公路交通事故起数时空分析模型[J]. 交通运输工程学报, 2012, 12(2): 93-99. doi: 10.3969/j.issn.1671-1637.2012.02.015

    MA Zhuang-lin, SHAO Chun-fu, HU Da-wei, et al. Temporal-spatial analysis model of traffic accident frequency on expressway[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 93-99. (in Chinese) doi: 10.3969/j.issn.1671-1637.2012.02.015
    [7] 林杉, 许宏科, 刘占文, 等. 公路隧道突发事件CBR-RBR交通控制方法[J]. 交通运输工程学报, 2011, 11(4): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201104016.htm

    LIN Shan, XU Hong-ke, LIU Zhan-wen, et al. Traffic control method of highway tunnel emergency based on CBR and RBR[J]. Journal of Traffic and Transportation Engineering, 2011, 11(4): 108-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201104016.htm
    [8] SONG Xiang, LI Xu, TANG Wen-cheng, et al. RFID/in-vehicle sensors-integrated vehicle positioning strategy utilizing LSSVM and federated UKF in a tunnel[J]. The Journal of Navigation, 2016, 69(4): 845-68. doi: 10.1017/S0373463315000946
    [9] COSTA E. Simulation of the effects of different urban environments on GPS performance using digital elevation models and building databases[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(3): 819-29. doi: 10.1109/TITS.2011.2122258
    [10] LEE J E, LIM H S, JEONG S H, et al. Enhanced iron-tunnel recognition for automotive radars[J]. IEEE Transactions on Vehicular Technology, 2015, 65(6): 4412-4418.
    [11] SONG Xiang, LI Xu, TANG Wen-cheng, et al. A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors[J]. Sensors, 2014, 14(12): 23095-23118. doi: 10.3390/s141223095
    [12] DONG Li-li, QIN Li, XU Wen-hai, et al. Detection method for vehicles in tunnels based on surveillance images[C]//IEEE. 4th International Conference on Transportation Information and Safety (ICTIS). New York: IEEE, 2017: 836-843.
    [13] 徐志刚, 李金龙, 赵祥模, 等. 智能公路发展现状与关键技术[J]. 中国公路学报, 2019, 32(8): 1-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201908002.htm

    XU Zhi-gang, LI Jin-long, ZHAO Xiang-mo, et al. A review on intelligent road and its related key technologies[J]. China Journal of Highway and Transport, 2019, 32(8): 1-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201908002.htm
    [14] LI Chang-le, LUO Qu-yuan, MAO Guo-qiang, et al. Vehicle-mounted base station for connected and autonomous vehicles: opportunities and challenges[J]. IEEE Wireless Communications, 2019, 26(4): 30-36. doi: 10.1109/MWC.2019.1800541
    [15] CRUZ S, ABRUDAN T, XIAO Z, et al. Neighbor-aided localization in vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(10): 2693-2702. doi: 10.1109/TITS.2017.2655146
    [16] PARKER R, VALAEE S. Vehicular node localization using received-signal-strength indicator[J]. IEEE Transactions on Vehicular Technology, 2007, 56(6): 3371-3380. doi: 10.1109/TVT.2007.907687
    [17] FASCISTA A, CICCARESE G, COLUCCIA A, et al. Angle of arrival-based cooperative positioning for smart vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(9): 2880-2892. doi: 10.1109/TITS.2017.2769488
    [18] CHAN Y T, TSUI W Y, SO H C, et al. Time-of-arrival based localization under NLOS conditions[J]. IEEE Transactions on Vehicular Technology, 2006, 55(1): 17-24. doi: 10.1109/TVT.2005.861207
    [19] YANG Kai, AN Jian-ping, BU Xian-yuan, et al. Constrained total least-squares location algorithm using time-difference-of-arrival measurements[J]. IEEE Transactions on Vehicular Technology, 2009, 59(3): 1558-1562. http://ieeexplore.ieee.org/document/5342476
    [20] CHEN C H, LEE C A, LO C C. Vehicle localization and velocity estimation based on mobile phone sensing[J]. IEEE Access, 2016, 4: 803-817. doi: 10.1109/ACCESS.2016.2530806
    [21] HUANG Zi-lin, ZHU Xian-yuan, LIN Yong-jie, et al. A novel WiFi-oriented RSSI signal processing method for tracking low-speed pedestrians[C]//IEEE. 5th International Conference on Transportation Information and Safety (ICTIS). New York: IEEE, 2019: 1018-1023.
    [22] HUANG Zi-lin, XU Lun-hui, LIN Yong-jie. Multi-stage pedestrian positioning using filtered WiFi scanner data in an urban road environment[J]. Sensors, 2020, 20(11): 3259. doi: 10.3390/s20113259
    [23] WANG Bang, ZHOU Sheng-liang, LIU Wen-yu, et al. Indoor localization based on curve fitting and location search using received signal strength[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 572-582. doi: 10.1109/TIE.2014.2327595
    [24] 夏颖, 马琳, 张中兆, 等. 基于半监督流形学习的WLAN室内定位算法[J]. 系统工程与电子技术, 2014, 36(7): 1422-1427. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201407032.htm

    XIA Ying, MA Lin, ZHANG Zhong-zhao, et al. WLAN indoor positioning algorithm based on semi-supervised manifold learning[J]. Systems Engineering and Electronics, 2014, 36(7): 1422-1427. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201407032.htm
    [25] KASANTIKUL K, XIU Chun-di, YANG Dong-kai, et al. An enhanced technique for indoor navigation system based on WiFi-RSSI[C]//IEEE. 2015 Seventh International Conference on Ubiquitous and Future Networks. New York: IEEE, 2015: 513-518.
    [26] HUANG Guang-bin, ZHU Qin-yu, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501. http://www.sciencedirect.com/science/article/pii/S0925231206000385
    [27] HUANG Gao, SONG Shi-ji, GUPTA J N D, et al. Semi-supervised and unsupervised extreme learning machines[J]. IEEE Transactions on Cybernetics, 2014, 44(12): 2405-2417. doi: 10.1109/TCYB.2014.2307349
    [28] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290: 2323-2326. doi: 10.1126/science.290.5500.2323
    [29] JONDHALE S R, DESHPANDE R S. Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks[J]. IEEE Sensors Journal, 2018, 19(1): 224-233. http://ieeexplore.ieee.org/document/8478766
    [30] FANG S H, LIN T N. Principal component localization in indoor WLAN environments[J]. IEEE Transactions on Mobile Computing, 2011, 11(1): 100-110. http://ieeexplore.ieee.org/document/5710948
    [31] 蒋育康, 郭爱煌, 艾渤, 等. 城市轨道交通隧道环境下大规模MIMO信道建模[J]. 铁道学报, 2018, 40(11): 84-90. doi: 10.3969/j.issn.1001-8360.2018.11.012

    JIANG Yu-kang, GUO Ai-huang, AI Bo, et al. Massive MIMO channel modeling for tunnel of urban rail transit[J]. Journal of the China Railway Society, 2018, 40(11): 84-90. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.11.012
    [32] SHIH Y C, HSU Y Y, CHEN C H, et al. Adaptive attenuation factor model for localization in wireless sensor networks[J]. International Journal of Pervasive Computing and Communications, 2008, 4(3): 257-267. doi: 10.1108/17427370810911621
    [33] YU Feng, JIANG Ming-hua, LIANG Jing, et al. 5G WiFi signal-based indoor localization system using cluster k-nearest neighbor algorithm[J]. International Journal of Distributed Sensor Networks, 2014, 10(12): 247525-1-12. doi: 10.1155/2014/247525
    [34] 王金甲, 田佩佩. 半监督极限学习机用于Android手机活动识别的研究[J]. 高技术通讯, 2017, 27(3): 228-236. doi: 10.3772/j.issn.1002-0470.2017.03.005

    WANG Jin-jia, TIAN Pei-pei. Study of applying semi-supervised extreme learning machines to activity recognition using Android phones[J]. Chinese High Technology Letters, 2017, 27(3): 228-236. (in Chinese) doi: 10.3772/j.issn.1002-0470.2017.03.005
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  875
  • HTML全文浏览量:  277
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-09
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回