留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能汽车两阶段UWB定位算法

朱冰 陶晓文 赵健 柯敏 王志伟 李鑫

朱冰, 陶晓文, 赵健, 柯敏, 王志伟, 李鑫. 智能汽车两阶段UWB定位算法[J]. 交通运输工程学报, 2021, 21(2): 256-266. doi: 10.19818/j.cnki.1671-1637.2021.02.022
引用本文: 朱冰, 陶晓文, 赵健, 柯敏, 王志伟, 李鑫. 智能汽车两阶段UWB定位算法[J]. 交通运输工程学报, 2021, 21(2): 256-266. doi: 10.19818/j.cnki.1671-1637.2021.02.022
ZHU Bing, TAO Xiao-wen, ZHAO Jian, KE Min, WANG Zhi-wei, LI Xin. Two-stage UWB positioning algorithm of intelligent vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 256-266. doi: 10.19818/j.cnki.1671-1637.2021.02.022
Citation: ZHU Bing, TAO Xiao-wen, ZHAO Jian, KE Min, WANG Zhi-wei, LI Xin. Two-stage UWB positioning algorithm of intelligent vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 256-266. doi: 10.19818/j.cnki.1671-1637.2021.02.022

智能汽车两阶段UWB定位算法

doi: 10.19818/j.cnki.1671-1637.2021.02.022
基金项目: 

国家重点研发计划项目 2018YFB0105103

国家自然科学基金项目 51775235

吉林省发改委科技项目 2019C036-6

吉林大学研究生创新研究计划项目 101832020CX130

吉林大学研究生创新研究计划项目 101832020CX127

详细信息
    作者简介:

    朱冰(1982-),男,吉林双辽人,吉林大学教授,工学博士,从事汽车电控与智能化技术研究

    通讯作者:

    赵健(1978-),男,辽宁沈阳人,吉林大学教授,工学博士

  • 中图分类号: U491.8

Two-stage UWB positioning algorithm of intelligent vehicle

Funds: 

National Key Research and Development Program of China 2018YFB0105103

National Natural Science Foundation of China 51775235

Jilin Provincial Development and Reform Commission Science and Technology Project 2019C036-6

Graduate Innovation Fund of Jilin University 101832020CX130

Graduate Innovation Fund of Jilin University 101832020CX127

More Information
  • 摘要: 为了提高智能汽车行驶的可靠性,以超宽带(UWB)为研究对象,研究了智能汽车两阶段UWB定位算法;分析了智能汽车UWB定位算法的基本原理与误差来源;建立了测距值筛选与加权位置解算两阶段UWB定位算法,在测距值筛选阶段,采用高斯筛选剔除小概率、大干扰事件,在加权位置解算过程中,根据多测距点的位置坐标加权计算得到最终的位置坐标,以有效减小非视距、多径效应所带来的误差,通过使用抗多径天线以有效减小多径效应所带来的误差,并分别建立了静态补偿和运动补偿策略,以有效减小设备晶振偏差等硬件问题造成的误差;在MATLAB/Simulink仿真平台中搭建一定测距方差约束下的UWB随机测距值仿真环境,对算法进行了仿真测试并与三边定位算法、三边质心定位算法进行仿真比较,分析基站数量对定位精度的影响;搭建实物UWB测试系统,对UWB设备定位精度进行了评估与误差补偿,并对两阶段UWB定位算法进行了实车测试。仿真结果表明:东向和北向的定位误差均值最小分别可达0.382 3、0.447 0 m;补偿后的UWB定位轨迹更接近RT3002所示的轨迹,东向和北向轨迹误差的平均值分别为0.049 2、0.017 8 m,均方根误差分别为0.069 8、0.0264 m。可见,提出的智能汽车两阶段UWB定位算法能够满足智能汽车的定位需求,具有高精度、低成本、稳定性好等优点。

     

  • 图  1  UWB的组件

    Figure  1.  Component of UWB

    图  2  RSSI法

    Figure  2.  RSSI method

    图  3  AOA法

    Figure  3.  AOA method

    图  4  TOA法

    Figure  4.  TOA method

    图  5  TDOA法

    Figure  5.  TDOA method

    图  6  UWB双向测距原理

    Figure  6.  Principle of UWB bidirectional ranging

    图  7  UWB测距投影

    Figure  7.  Projection of UWB ranging

    图  8  两阶段UWB定位算法流程

    Figure  8.  Process of two-stage UWB positioning algorithm

    图  9  UWB三边定位算法仿真结果

    Figure  9.  Simulation result of trilateral positioning algorithm of UWB

    图  10  UWB三边质心定位算法仿真结果

    Figure  10.  Simulation result of trilateral centroid positioning algorithm of UWB

    图  11  两阶段UWB定位算法仿真结果

    Figure  11.  Simulation result of two-stage UWB positioning algorithm

    图  12  不同基站数量下的精度累计分布函数

    Figure  12.  Accuracy CDF under different numbers of base stations

    图  13  实车平台

    Figure  13.  Real vehicle platform

    图  14  UWB定位设备

    Figure  14.  UWB positioning equipments

    图  15  基站坐标测量台车

    Figure  15.  Measurement trolley for base station coordinates

    图  16  UWB测试场景

    Figure  16.  UWB test scenario

    图  17  UWB静态测试点

    Figure  17.  Static test points for UWB

    图  18  UWB设备静态测试点误差分布

    Figure  18.  Error distributions of UWB equipment static test points

    图  19  UWB设备数据点与拟合曲线

    Figure  19.  UWB equipment data points and fitting curve

    图  20  UWB设备动态定位测试轨迹

    Figure  20.  Test tracks for dynamic positioning of UWB equipment

    表  1  UWB设备静态测试点定位精度

    Table  1.   Positioning precisions of static test points for UWB equipment

    测试点 纵向距离/m 东向误差/m 北向误差/m
    均值 均方根误差 均值 均方根误差
    1 -14.627 8 1.405 6 0.268 1 1.068 9 0.351 5
    2 -7.992 5 0.851 1 0.118 9 0.831 8 0.153 9
    3 -1.326 1 0.392 3 0.097 6 0.457 1 0.139 7
    4 7.422 9 0.587 1 0.107 9 0.659 8 0.153 9
    下载: 导出CSV

    表  2  静态测试点测量值与实际值

    Table  2.   Ranging and actual values of static test points

    测试点 测量值/m 真实值/m
    1 4.913 8 2.948 8
    2 3.887 6 4.129 8
    3 3.857 2 4.553 4
    4 4.836 5 4.808 8
    5 6.159 5 5.112 2
    6 6.953 4 6.182 8
    7 5.422 2 6.811 1
    8 10.693 1 8.593 7
    9 11.841 7 10.576 4
    10 9.788 5 11.388 2
    11 12.861 1 11.634 7
    12 10.811 1 11.888 3
    13 18.295 7 16.475 8
    14 17.121 2 18.379 4
    下载: 导出CSV

    表  3  UWB设备动态测试点定位精度

    Table  3.   Positioning precisions of dynamic test points for UWB equipment

    测试点 纵向距离/m 东向误差/m 北向误差/m
    均值 均方根误差 均值 均方根误差
    1 -14.627 8 0.124 5 0.118 9 0.076 2 0.032 0
    2 -7.992 5 0.067 2 0.068 2 0.027 4 0.018 4
    3 -1.326 1 0.019 3 0.052 6 0.010 8 0.011 9
    4 7.422 9 0.058 8 0.063 5 0.021 3 0.013 4
    下载: 导出CSV
  • [1] 《中国公路学报》编辑部. 中国汽车工程学术研究综述·2017[J]. 中国公路学报, 2017, 30(6): 1-197. doi: 10.3969/j.issn.1001-7372.2017.06.001

    Editorial Department of China Journal of Highway and Transport. Review on China's automotive engineering research progress: 2017[J]. China Journal of Highway and Transport, 2017, 30(6): 1-197. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.06.001
    [2] 柯敏. 基于多传感信息的智能汽车组合定位策略研究[D]. 长春: 吉林大学, 2019.

    KE Min. Research on integrated positioning strategy based on multi-sensor information for intelligent vehicles[D]. Changchun: Jilin University, 2019. (in Chinese)
    [3] 胡海峰, 史忠科, 徐德文. 智能汽车发展研究[J]. 计算机应用研究, 2004(6): 20-23. doi: 10.3969/j.issn.1001-3695.2004.06.007

    HU Hai-feng, SHI Zhong-ke, XU De-wen. Research on intelligent vehicle development[J]. Application Research of Computers, 2004(6): 20-23. (in Chinese) doi: 10.3969/j.issn.1001-3695.2004.06.007
    [4] 刘江, 蔡伯根, 王云鹏. 基于GNSS/DSRC融合的协同车辆定位方法[J]. 交通运输工程学报, 2014, 14(4): 116-126. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201404016.htm

    LIU Jiang, CAI Bai-gen, WANG Yun-peng. Cooperative vehicle position method based on GNSS/DSRC fusion[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 116-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201404016.htm
    [5] LI W, CUI X, LU M. A robust graph optimization realization of tightly coupled GNSS/INS integrated navigation system for urban vehicles[J]. Tsinghua Science and Technology, 2018, 23(6): 724-732. doi: 10.26599/TST.2018.9010078
    [6] TAO Z, BONNIFAIT P, FRÉMONT V, et al. Road-centered map-aided localization for driverless cars using single-frequency GNSS receivers[J]. Journal of Field Robotics, 2017, 34(5): 1010-1033. doi: 10.1002/rob.21708
    [7] WANG J, BAI M, HUANG Y, et al. Study on GNSS/DR integrated navigation[C]//IEEE. 2017 29th Chinese Control and Decision Conference (CCDC). New York: IEEE, 2017: 4973-4979.
    [8] SKOG I, HANDEL P. In-car positioning and navigation technologies-a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(1): 4-21. doi: 10.1109/TITS.2008.2011712
    [9] ZAFARI F, GKELIAS A, LEUNG K K. A survey of indoor localization systems and technologies[J]. IEEE Communications Surveys and Tutorials, 2019, 21(3): 2568-2599. doi: 10.1109/COMST.2019.2911558
    [10] 李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1): 1-14. doi: 10.3969/j.issn.1674-8484.2017.01.001

    LI Ke-qiang, DAI Yi-fan, LI Sheng-bo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 1-14. (in Chinese) doi: 10.3969/j.issn.1674-8484.2017.01.001
    [11] 丁锐, 钱志鸿, 王雪. 基于TOA和DOA联合估计的UWB定位方法[J]. 电子与信息学报, 2010, 32(2): 313-317. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201002012.htm

    DING Rui, QIAN Zhi-hong, WANG Xue. UWB positioning system based on joint TOA and DOA estimation[J]. Journal of Electronic and Information Technology, 2010, 32(2): 313-317. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201002012.htm
    [12] STOLL H, ZIMMER P, HARTMANNF, et al. GPS- independent localization for off-road vehicles using ultra-wideband (UWB)[C]//IEEE. 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2017: 1-6.
    [13] 曹立波, 陈峥, 颜凌波, 等. 基于RFID、视觉和UWB的车辆定位系统[J]. 汽车工程, 2017, 39(2): 225-231. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201702017.htm

    CAO Li-bo, CHEN Zheng, YAN Ling-bo, et al. Vehicle positioning system based on RFID, vision and UWB[J]. Automotive Engineering, 2017, 39(2): 225-231. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201702017.htm
    [14] 段世红, 姚翠, 徐诚, 等. 传感网中UWB和IMU融合定位的性能评估[J]. 计算机研究与发展, 2018, 55(11): 2501-2510. doi: 10.7544/issn1000-1239.2018.20170661

    DUAN Shi-hong, YAO Cui, XU Cheng, et al. Performance evaluation of UWB and IMU fusion positioning in wireless sensor network[J]. Journal of Computer Research and Development, 2018, 55(11): 2501-2510. (in Chinese) doi: 10.7544/issn1000-1239.2018.20170661
    [15] PRERADOVIC S, KARMAKAR N C. Chipless RFID: bar code of the future[J]. IEEE Microwave Magazine, 2010, 11(7): 87-97. doi: 10.1109/MMM.2010.938571
    [16] DARDARI D, D'ERRICO R, ROBLIN C, et al. Ultrawide bandwidth RFID: the next generation[J]. Proceedings of the IEEE, 2010, 98(9): 1570-1582. doi: 10.1109/JPROC.2010.2053015
    [17] 胡大伟, 陈希琼, 高扬. 定位-路径问题综述[J]. 交通运输工程学报, 2018, 18(1): 111-129. doi: 10.3969/j.issn.1671-1637.2018.01.011

    HU Da-wei, CHEN Xi-qiong, GAO Yang. Review on location- routing problem[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 111-129. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.01.011
    [18] URMSON C, ANHALT J, BAGNELL D, et al. Autonomous driving in urban environments: boss and the urban challenge[J]. Journal of Field Robotics, 2008, 25(8): 425-466. doi: 10.1002/rob.20255
    [19] FONTANAR J. Recent system applications of short-pulse ultra-wideband (UWB) technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(9): 2087-2104. doi: 10.1109/TMTT.2004.834186
    [20] GAKNE P V, O'KEEFE K. Tightly-coupled GNSS/vision using a sky-pointing camera for vehicle navigation in urban areas[J]. Sensors, 2018, 18(4): 1-32. doi: 10.1109/JSEN.2017.2782543
    [21] QIN Tong, LI Pei-liang, SHEN Shao-jie. VINS-Mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. doi: 10.1109/TRO.2018.2853729
    [22] SUCAN I A, MOLL M, KAVRAKI L E. The open motion planning library[J]. IEEE Robotic and Automation Magazine, 2012, 19(4): 72-82. doi: 10.1109/MRA.2012.2205651
    [23] LIU T S, MERAT A, MAKHMALBAF M H M, et al. Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images[J]. Experiments in Fluids, 2015, 56(8): 1-23. doi: 10.1007/s00348-015-2036-1
    [24] HE Y N. Taylor expansion method for nonlinear evolution equations[J]. Applied Mathematics and Mechanics-English Edition, 2005, 26(4): 522-529. doi: 10.1007/BF02465392
    [25] LUPTON T, SUKKARIEH S. Visual-inertial-aided navigation for high-dynamic motion in built environments without initial conditions[J]. IEEE Transactions on Robot, 2012, 28(1): 61-76. doi: 10.1109/TRO.2011.2170332
    [26] LI Zeng-ke, WANG Ren, GAO Jing-xiang, et al. An approach to improve the positioning performance of GPS/INS/UWB integrated system with two-step filter[J]. Remote Sensing, 2018, 10(1): 1-14. http://adsabs.harvard.edu/abs/2018RemS...10...19L
    [27] LI Xin, WANG Yang. Research on a factor graph-based robust UWB positioning algorithm in NLOS environments[J]. Telecommunication Systems, 2021, 76(2): 207-217. doi: 10.1007/s11235-020-00709-2
    [28] TOTH C K, JOZKOW G, KOPPANYI Z, et al. Positioning slow-moving platforms by UWB technology in GPS-challenged areas[J]. Journal of Surveying Engineering, 2017, 143(4): 1-9.
    [29] LIU Fei, LI Xin, WANG Jian, et al. An adaptive UWB/ MEMS-IMU complementary Kalman filter for indoor location in NLOS environment[J]. Remote Sensing, 2019, 11(22): 1-21. http://www.researchgate.net/publication/337189011_An_Adaptive_UWBMEMS-IMU_Complementary_Kalman_Filter_for_Indoor_Location_in_NLOS_Environment
    [30] ZHU Xiao-min, YI Jian-jun, CHENG Jun-yi, et al. Adapted error map based mobile robot UWB indoor positioning[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 1-15. doi: 10.1109/TIM.2020.3014465
    [31] MINNE K, MACOIR N, ROSSEY J, et al. Experimental evaluation of UWB indoor positioning for indoor track cycling[J]. Sensors, 2019, 19(9): 1-17. doi: 10.1109/JSEN.2019.2897439
    [32] CHEN Peng-zhan, KUANG Ye, CHEN Xiao-yue. A UWB/improved PDR integration algorithm applied to dynamic indoor positioning for pedestrians[J]. Sensors, 2017, 17(9): 1-20. doi: 10.1109/JSEN.2017.2685478
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  709
  • HTML全文浏览量:  429
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-03
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回