留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进SSD模型在高分二号遥感影像中高速公路收费站位提取的应用

王正鸿 杨川

王正鸿, 杨川. 改进SSD模型在高分二号遥感影像中高速公路收费站位提取的应用[J]. 交通运输工程学报, 2021, 21(2): 278-286. doi: 10.19818/j.cnki.1671-1637.2021.02.024
引用本文: 王正鸿, 杨川. 改进SSD模型在高分二号遥感影像中高速公路收费站位提取的应用[J]. 交通运输工程学报, 2021, 21(2): 278-286. doi: 10.19818/j.cnki.1671-1637.2021.02.024
WANG Zheng-hong, YANG Chuan. Improved SSD model in extraction application of expressway toll station locations from GaoFen 2 remote sensing image[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 278-286. doi: 10.19818/j.cnki.1671-1637.2021.02.024
Citation: WANG Zheng-hong, YANG Chuan. Improved SSD model in extraction application of expressway toll station locations from GaoFen 2 remote sensing image[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 278-286. doi: 10.19818/j.cnki.1671-1637.2021.02.024

改进SSD模型在高分二号遥感影像中高速公路收费站位提取的应用

doi: 10.19818/j.cnki.1671-1637.2021.02.024
基金项目: 

中国高分辨率对地观测系统重大专项 07-Y30B03-9001-19/21

国家自然科学基金项目 42072281

详细信息
    作者简介:

    王正鸿(1997-), 男, 福建福州人, 中国公路工程咨询集团有限公司助理工程师, 从事智能交通信息控制研究

    通讯作者:

    杨川(1990-), 男, 浙江温州人, 中国交通通信信息中心工程师, 理学博士

  • 中图分类号: U491.2

Improved SSD model in extraction application of expressway toll station locations from GaoFen 2 remote sensing image

Funds: 

High Resolution Earth Observation System Major Project of China 07-Y30B03-9001-19/21

National Natural Science Foundation of China 42072281

More Information
  • 摘要: 以高分二号遥感影像中的高速公路收费站为研究对象,选取了北京、山西、河南、广东、福建5个省市2019年的高速公路收费站点位和0.8 m遥感影像,通过图像预处理、样本标注、裁切、数据增强、样本集划分的步骤制作训练样本集;引入“多尺度特征融合”的方法对SSD目标检测模型进行改进,通过增加“转置卷积”和“拼接”操作,将高层次特征图像的语义特征赋予低层次特征图像,以增强上采样质量与特征融合能力,从而提升了模型对小目标收费站的检测效果;将改进SSD模型用于2019年福建省高分二号影像中的收费站点位提取,沿福建省高速公路路网矢量对影像进行自动切片,将切片输入模型中进行目标检测;保留有收费站的切片,使用非极大值抑制去除多余的检测框,将剩余的检测框的坐标变换为中心点的坐标,可以直接输出得到高速公路收费站的中心点矢量,从而实现对于收费站点位的端到端自动化提取。研究结果表明:改进SSD模型的精度、召回率及二者的调和平均数分别为0.86、0.88和0.87,均优于传统的SSD, VGG, Faster R-CNN和特征金字塔网络模型。可见,对收费站点位的自动提取可以大大提高公路管理者的工作效率,有效满足公路管理者的实际工作需求。

     

  • 图  1  高分二号遥感影像中典型收费站类型

    Figure  1.  Typical toll station types of GaoFen 2 remote sensing images

    图  2  高分二号遥感影像预处理与训练样本集制备

    Figure  2.  GaoFen 2 remote sensing images pre-processing and training dataset preparation

    图  3  改进SSD模型与SSD模型对比

    Figure  3.  Comparison between improved SSD and SSD model

    图  4  收费站提取结果

    Figure  4.  Results of toll station extraction

    图  5  模型训练中验证集的平均精度比较

    Figure  5.  Average accuracy comparison of validation set during model training

    图  6  福建省高分二号遥感影像的收费站点位提取结果

    Figure  6.  Extraction results of toll stations of GaoFen 2 remote sensing images of Fujian Province

    图  7  基于改进SSD模型的收费站点位提取错误与遗漏

    Figure  7.  Errors and omission of toll stations extraction based on modified SSD model

    表  1  SSD模型的各层次特征图像维度

    Table  1.   Dimensions of different levels of feature maps in SSD model

    卷积层4 卷积层7 卷积层8 卷积层9 卷积层10 卷积层11
    尺寸 38像素×38像素 19像素×19像素 10像素×10像素 5像素×5像素 3像素×3像素 1像素×1像素
    通道数 512 1 024 512 256 256 256
    下载: 导出CSV

    表  2  模型训练中的验证集的平均精度

    Table  2.   Average accuracy in validation dataset during model training

    模型 平均精度
    VGG 0.69
    Faster R-CNN 0.81
    SSD 0.83
    FPN 0.92
    改进SSD 0.96
    下载: 导出CSV

    表  3  福建省高分二号遥感影像的收费站提取结果评估

    Table  3.   Evaluation of toll stations extraction results of GaoFen 2 remote sensing images of Fujian Province

    模型 P R F
    VGG 0.51 0.62 0.56
    Faster R-CNN 0.74 0.76 0.75
    SSD 0.76 0.79 0.77
    FPN 0.83 0.84 0.84
    改进SSD 0.86 0.88 0.87
    下载: 导出CSV
  • [1] 薛晨荣, 尹东, 李桂芹, 等. 道路收费站的识别研究[J]. 计算机仿真, 2009, 26(2): 225-228. doi: 10.3969/j.issn.1006-9348.2009.02.057

    XUE Chen-rong, YIN Dong, LI Gui-qin, et al. A study of toll station recognition[J]. Computer Simulation, 2009, 26(2): 225-228. (in Chinese) doi: 10.3969/j.issn.1006-9348.2009.02.057
    [2] 李剑, 梅乐翔, 高薪, 等. 基于卫星遥感图像的收费站位置自动识别与校核[J]. 中国交通信息化, 2019(7): 109-110, 116. https://www.cnki.com.cn/Article/CJFDTOTAL-JTXC201907012.htm

    LI Jian, MEI Le-xiang, GAO Xin, et al. Automatic recognition and verification of toll station location based on satellite remote sensing images[J]. China ITS Journal, 2019(7): 109-110, 116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTXC201907012.htm
    [3] 刘晟, 王卫星, 王珊珊, 等. 模糊航空图像中的道路自动检测方法[J]. 交通运输工程学报, 2015, 15(4): 110-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201504016.htm

    LIU Sheng, WANG Wei-xing, WANG Shan-shan, et al. Automatic detection method of roads from fuzzy aerial images[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 110-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201504016.htm
    [4] WANG Min, ZHANG Si-qi. Road extraction from high-spatial- resolution remotely sensed imagery by combining multi-profile analysis and extended Snakes model[J]. International Journal of Remote Sensing, 2011, 32(21): 6349-6365. doi: 10.1080/01431161.2010.508801
    [5] HEIPKE C, MAYER H, WIEDEMANN C, et al. Evaluation of automatic road extraction[J]. International Archives of Photogrammetry and Remote Sensing, 1997, 32: 151-160. http://ci.nii.ac.jp/naid/10019600414
    [6] 李珣, 刘瑶, 李鹏飞, 等. 基于Darknet框架下YOLO v2算法的车辆多目标检测方法[J]. 交通运输工程学报, 2018, 18(6): 142-158. doi: 10.3969/j.issn.1671-1637.2018.06.015

    LI Xun, LIU Yao, LI Peng-fei, et al. Vehicle multi-target detection method based on YOLO v2 algorithm under darknet framework[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 142-158. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.06.015
    [7] ZHOU J, GAO D S, ZHANG D. Moving vehicle detection for automatic traffic monitoring[J]. IEEE Transactions on Vehicular Technology, 2007, 56(1): 51-59. doi: 10.1109/TVT.2006.883735
    [8] LEITLOFF J, HINZ S, STILLA U. Vehicle detection in very high resolution satellite images of city areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2795-2806. doi: 10.1109/TGRS.2010.2043109
    [9] KARANTZALOS K, PARAGIOS N. Recognition-driven 2D competing priors towards automatic and accurate building detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 47(1): 133-144. http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=37382800&site=ehost-live
    [10] OK A O, SENARAS C, YUKSEL B. Automated detection of arbitrarily shaped buildings in complex environments from monocular VHR optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 51(3): 1701-1717. http://ieeexplore.ieee.org/document/6276251
    [11] AHMADI S, ZOEJ M J V, EBADI H, et al. Automatic urban building boundary extraction from high resolution aerial images using an innovative model of active contours[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12(3): 150-157. doi: 10.1016/j.jag.2010.02.001
    [12] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. doi: 10.1162/neco.2006.18.7.1527
    [13] BASSANI M, MUSSONE L. Experimental analysis of operational data for roundabouts through advanced image processing[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(4): 482-497. doi: 10.1016/j.jtte.2019.01.005
    [14] DWIVEDI N, SINGH D K, KUSHWAHA D S. Weapon classification using deep convolutional neural network[C]//IEEE. 2019 IEEE Conference on Information and Communication Technology. New York: IEEE, 2019: 9066227.
    [15] 沙爱民, 童峥, 高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31(1): 1-10. doi: 10.3969/j.issn.1001-7372.2018.01.001

    SHA Ai-min, TONG Zheng, GAO Jie. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31(1): 1-10. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.01.001
    [16] 刘占文, 赵祥模, 李强, 等. 基于图模型与卷积神经网络的交通标志识别方法[J]. 交通运输工程学报, 2016, 16(5): 122-131. doi: 10.3969/j.issn.1671-1637.2016.05.014

    LIU Zhan-wen, ZHAO Xiang-mo, LI Qiang, et al. Traffic sign recognition method based on graphical model and convolutional neural network[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 122-131. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.05.014
    [17] XU Yong-yang, XIE Zhong, FENG Ya-xing, et al. Road extraction from high-resolution remote sensing imagery using deep learning[J]. Remote Sensing, 2018, 10(9): 1461. doi: 10.3390/rs10091461
    [18] GONG Li-xia, WANG Chao, WU Fan, et al. Earthquake-induced building damage detection with post-event sub-meter VHR TerraSAR-X staring spotlight imagery[J]. Remote Sensing, 2016, 8(11): 887. doi: 10.3390/rs8110887
    [19] YANG Chuan, WANG Zheng- hong. An ensemble Wasserstein generative adversarial network method for road extraction from high resolution remote sensing images in rural areas[J]. IEEE Access, 2020, 8: 174317-174324. doi: 10.1109/ACCESS.2020.3026084
    [20] CHEN Zheng-chao, LU Kai-xuan, GAO Lian-ru, et al. Automatic detection of track and fields in China from high-resolution satellite images using multi-scale-fused single shot multibox detector[J]. Remote Sensing, 2019, 11(11): 1377. doi: 10.3390/rs11111377
    [21] JI Shun-ping, YU Da-wen, SHEN Chao-yong, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6): 1337-1352. doi: 10.1007/s10346-020-01353-2
    [22] GONG Peng, LI Xue-cao, ZHANG Wei. 40-year (1978- 2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing[J]. Science Bulletin, 2019, 64(11): 756-763. doi: 10.1016/j.scib.2019.04.024
    [23] TONG Xin-yi, LU Qi-kai, XIA Gui-song. Large-scale land cover classification in GaoFen-2 satellite imagery[C]//IEEE. 38th Annual IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE, 2018: 3599-3602.
    [24] WU Qiong, ZHONG Ruo-fei, ZHAO Wen-ji, et al. Land-cover classification using GF-2 images and airborne lidar data based on Random Forest[J]. International Journal of Remote Sensing, 2019, 40(5/6): 2410-2426. doi: 10.1080/01431161.2018.1483090
    [25] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 779-788.
    [26] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 6517-6525.
    [27] REDMON J, FARHADI A. YOLO v3: an incremental improvement[R]. Ithaca: Cornell University, 2018.
    [28] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Springer. 14th European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [29] HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [30] GIRSHICK R. Fast R-CNN[C]//IEEE. 15th IEEE International Conference on Computer Vision. New York: IEEE, 2015: 1440-1448.
    [31] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE. 27th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2014, 580-587.
    [32] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 936-944.
    [33] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//ICLR. 3rd International Conference on Learning Representations. New Orleans: ICLR, 2015: 1-14.
    [34] 王俊强, 李建胜, 周学文, 等. 改进的SSD算法及其对遥感影像小目标检测性能的分析[J]. 光学学报, 2019, 39(6): 0628005. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201906044.htm

    WANG Jun-qiang, LI Jian-sheng, ZHOU Xue-wen, et al. Improved SSD algorithm and its performance analysis of small target detection in remote sensing images[J]. Acta Optica Sinica, 2019, 39(6): 0628005. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201906044.htm
    [35] ZHAI She-ping, SHANG Ding-rong, WANG Shu-huan, et al. DF-SSD: an improved SSD object detection algorithm based on DenseNet and feature fusion[J]. IEEE Access, 2020, 8: 24344-24357. doi: 10.1109/ACCESS.2020.2971026
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  398
  • HTML全文浏览量:  122
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回