留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车气动噪声研究综述

朱剑月 张清 徐凡斐 刘林芽 圣小珍

朱剑月, 张清, 徐凡斐, 刘林芽, 圣小珍. 高速列车气动噪声研究综述[J]. 交通运输工程学报, 2021, 21(3): 39-56. doi: 10.19818/j.cnki.1671-1637.2021.03.003
引用本文: 朱剑月, 张清, 徐凡斐, 刘林芽, 圣小珍. 高速列车气动噪声研究综述[J]. 交通运输工程学报, 2021, 21(3): 39-56. doi: 10.19818/j.cnki.1671-1637.2021.03.003
ZHU Jian-yue, ZHANG Qing, XU Fan-fei, LIU Lin-ya, SHENG Xiao-zhen. Review on aerodynamic noise research of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 39-56. doi: 10.19818/j.cnki.1671-1637.2021.03.003
Citation: ZHU Jian-yue, ZHANG Qing, XU Fan-fei, LIU Lin-ya, SHENG Xiao-zhen. Review on aerodynamic noise research of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 39-56. doi: 10.19818/j.cnki.1671-1637.2021.03.003

高速列车气动噪声研究综述

doi: 10.19818/j.cnki.1671-1637.2021.03.003
基金项目: 

国家自然科学基金项目 51875411

上海市科学技术委员会科研计划项目 19DZ2290400

详细信息
    作者简介:

    朱剑月(1973-),男,江苏常熟人,同济大学副教授,工学博士,从事高速列车空气动力学与气动噪声研究

  • 中图分类号: U270.16

Review on aerodynamic noise research of high-speed train

Funds: 

National Natural Science Foundation of China 51875411

Scientific Research Program of Shanghai Science and Technology Committee 19DZ2290400

More Information
  • 摘要: 根据近年来高速列车气动噪声相关研究,从试验研究、理论分析和数值模拟方面介绍了当前高速列车气动噪声研究现状和研究成果, 分析了高速列车气动噪声源分布和产生机理,探讨了高速列车关键区域气动噪声降噪措施,展望了未来研究方向。研究结果表明:高速列车运行产生的气动噪声主要声源为几何体表面偶极子声源,分布在转向架、受电弓、车厢连接处、头车与尾车等区域;转向架区域存在着车体表面结构不连续性,气流流经时产生流动分离和流体相互作用,形成较强气动噪声源,可以采用转向架舱外设置裙板和舱内壁与周围铺设吸声板等措施进行降噪;受电弓各部件受到流动冲击作用,产生周期性涡旋脱落诱发的单音噪声,可通过减少受电弓结构部件、改变受电弓杆件截面形状、安装受电弓导流罩、受电弓两侧设置隔声板和射流控制等措施进行气动噪声有效控制;无封闭式车厢风挡形成开放式环形空腔,气流流经时产生较强的气动噪声和气动声学耦合,采用全封闭风挡可有效降低气动噪声产生;头车部位气流流动分离以及尾车部位由于尾涡脱落和非定常流动结构形成与发展,诱发气动噪声产生,头车、车身与尾车减少突出部件,保持几何体表面光滑和连续性,有利于取得较好的降噪效果;随着未来更高速度级高速列车研发,有必要进一步深入研究高速列车气动噪声理论与数值模拟方法,提升气动噪声降噪技术水平,有效控制气动噪声。

     

  • 图  1  高速列车随速度增加产生的噪声

    Figure  1.  Noise generated by a high-speed train with increasing of speed

    图  2  TGV高速列车头车噪声源云图

    Figure  2.  Noise source maps from leading car of TGV train

    图  3  列车头车噪声源云图比较

    Figure  3.  Comparison of noise source maps of leading car

    图  4  声学风洞内声阵列测试

    Figure  4.  Acoustic array measurement in acoustic wind tunnel

    图  5  声学风洞内高速列车模型

    Figure  5.  High-speed train model in acoustic wind tunnel

    图  6  开口式航空声学风洞内高速列车模型

    Figure  6.  High-speed train model in open aeroacoustic wind tunnel

    图  7  列车轮对数值模拟DDES模型特性

    Figure  7.  DDES model properties of train wheelset simulation case

    图  8  转向架周围瞬态涡结构

    Figure  8.  Instantaneous vortex structure around bogie

    图  9  转向架气动噪声空间声指向性

    Figure  9.  Spatial noise directivity of bogie

    图  10  受电弓周围瞬态涡结构

    Figure  10.  Instantaneous vortex structure around pantograph

    图  11  TGV高速列车头车周围瞬态涡结构

    Figure  11.  Instantaneous vortex structure around TGV leading car

    图  12  FW-H气动噪声预测的可穿透积分面设置

    Figure  12.  Porous integration surfaces for FW-H aerodynamic noise prediction

    图  13  沿车轴轴向中截面四极子声源分布

    Figure  13.  Quadruple noise source distribution along axial mid-plane of axle

    图  14  列车尾迹内涡对

    Figure  14.  Vortex pair developed in train wake

    图  15  新干线高速列车车头转向架部位裙板

    Figure  15.  Fairing installed around leading bogie of Shinkansen high-speed trains

    图  16  转向架舱内壁增设吸声板

    Figure  16.  Sound-absorbing panel settled within bogie cavity

    图  17  排障器与转向架舱外裙板连接

    Figure  17.  Cowcatcher connected with bogie fairing around bogie cavity

    图  18  排障器模型

    Figure  18.  Cowcatcher models

    图  19  列车模型气动噪声源云图

    Figure  19.  Aerodynamic noise source maps of train model

    图  20  翼型受电弓

    Figure  20.  Aerofoil pantograph

    图  21  低噪声受电弓

    Figure  21.  Low-noise pantograph

    图  22  单臂受电弓

    Figure  22.  Single arm pantograph

    图  23  受电弓隔声板

    Figure  23.  Noise insulation plates of pantograph

    图  24  典型高速列车头型

    Figure  24.  Typical nose shapes of high-speed train

  • [1] 丁叁叁, 陈大伟, 刘加利. 中国高速列车研发与展望[J]. 力学学报, 2021, 53(1): 35-50. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202101004.htm

    DING San-san, CHEN Da-wei, LIU Jia-li. Research, development and prospect of Chinese high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 35-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202101004.htm
    [2] 孙振旭, 姚永芳, 杨焱, 等. 国内高速列车气动噪声研究进展概述[J]. 空气动力学学报, 2018, 36(3): 385-397. doi: 10.7638/kqdlxxb-2018.0003

    SUN Zhen-xu, YAO Yong-fang, YANG Yan, et al. Overview of the research progress on aerodynamic noise ofhigh speed trains in China[J]. Acta Aerodynamica Sinica, 2018, 36(3): 385-397. (in Chinese) doi: 10.7638/kqdlxxb-2018.0003
    [3] THOMPSON D J, IGLESIAS E L, LIU Xiao-wan, et al. Recent developments in the prediction and control of aerodynamic noise from high-speed trains[J]. International Journal of Rail Transportation, 2015, 3(3): 119-150. doi: 10.1080/23248378.2015.1052996
    [4] CHIARIOTTI P, MARTARELLI M, CASTELLINI P. Acoustic beamforming for noise source localization—reviews, methodology and applications[J]. Mechanical Systems and Signal Processing, 2019, 120: 422-448. doi: 10.1016/j.ymssp.2018.09.019
    [5] MELLET C, LETOURNEAUX F, POISSON F, et al. High speed train noise emission: latest investigation of the aerodynamic/rolling noise contribution[J]. Journal of Sound and Vibration, 2006, 293(3-5): 535-546. doi: 10.1016/j.jsv.2005.08.069
    [6] POISSON F, GAUTIER P E, LETOURNEAUX F. Noise sources for high speed trains: a review of results in the TGV case[C]//SCHULTE-WERNING B, THOMPSON D, GAUTIER P E, et al. Proceedings of the 9th International Workshop on Railway Noise. Berlin: Springer, 2008: 71-77.
    [7] 杨妍, 张捷, 何宾, 等. 基于试验测试的桥梁与路堤区段高速列车车外噪声特性分析[J]. 机械工程学报, 2019, 55(20): 188-197. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201920019.htm

    YANG Yan, ZHANG Jie, HE Bin, et al. Analysis on exterior noise characteristics of high-speed trains in bridges and embankments section based on experiment[J]. Journal of Mechanical Engineering, 2019, 55(20): 188-197. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201920019.htm
    [8] 王东镇, 葛剑敏. 高速列车运行时不同转向架区噪声特性[J]. 交通运输工程学报, 2020, 20(4): 174-183. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004018.htm

    WANG Dong-zhen, GE Jian-min. Noise characteristics in different bogie areas during high-speed train operation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 174-183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004018.htm
    [9] 朱雷威, 郭建强, 赵艳菊, 等. 高速列车转向架区气动噪声分离研究[J]. 振动、测试与诊断, 2020, 40(3): 489-493. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202003010.htm

    ZHU Lei-wei, GUO Jian-qiang, ZHAO Yan-ju, et al. Study on separation of aerodynamic noise from high-speed train bogie[J]. Journal of Vibration, Measurement and Diagnosis, 2020, 40(3): 489-493. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202003010.htm
    [10] LAUTERBACH A, EHRENFRIED K, LOOSE S, et al. Microphone array wind tunnel measurements of Reynolds number effects in high-speed train aeroacoustics[J]. International Journal of Aeroacoustics, 2012, 3/4(11): 411-446.
    [11] IGLESIAS L E, THOMPSON D J, SMITH M G, et al. Anechoic wind tunnel tests on high speed train[J]. International Journal of Rail Transportation, 2017, 5(2): 87-109. doi: 10.1080/23248378.2016.1274685
    [12] 高阳, 王毅刚, 王金田, 等. 声学风洞中的高速列车模型气动噪声试验研究[J]. 声学技术, 2013, 32(6): 506-510. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201306016.htm

    GAO Yang, WANG Yi-gang, WANG Jin-tian, et al. Testing study of aerodynamic noise for high speed train model in aero-acoustic wind tunnel[J]. Technical Acoustics, 2013, 32(6): 506-510. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201306016.htm
    [13] 郝南松. 高速列车气动噪声风洞试验技术研究[C]//中国航空学会. 2016年度全国气动声学学术会议论文摘要集. 北京: 中国航空学会, 2016: 9-17.

    HAO Nan-song. Study on wind tunnel test technology of aerodynamic noise of high speed train[C]//Chinese Society of Aeronautics and Astronautics. Summary of the 2016 National Symposium on Aeroacoustics. Beijing: Chinese Society of Aeronautics and Astronautics, 2016: 9-17. (in Chinese)
    [14] 陈鹏, 马瑞轩, 张俊龙, 等. 5.5米×4米航空声学风洞低频压力脉动机理分析[C]//中国航空学会. 2016年度全国气动声学学术会议论文摘要集. 北京: 中国航空学会, 2016: 25.

    CHEN Peng, MA Rui-xuan, ZHANG Jun-long, et al. Mechanism analysis of low frequency pressure pulsation in 5.5 m×4 m aero acoustic wind tunnel[C]//Chinese Society of Aeronautics and Astronautics. Summary of the 2016 National Symposium on Aeroacoustics. Beijing: Chinese Society of Aeronautics and Astronautics, 2016: 25. (in Chinese)
    [15] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20: 181-195. doi: 10.1007/s00162-006-0015-0
    [16] 朱剑月, 雷震宇, 李莉. 高速列车轮对气动噪声特性分析[J]. 机械工程学报, 2019, 55(14): 69-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201914009.htm

    ZHU Jian-yue, LEI Zhen-yu, LI Li. Flow-induced noise behaviour around high-speed train wheelsets[J]. Journal of Mechanical Engineering, 2019, 55(14): 69-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201914009.htm
    [17] LIGHTHILL M J. On sound generated aerodynamically. I: general theory[J]. Proceedings of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences Society, 1952, 211: 564-587.
    [18] LIGHTHILL M J. On sound generated aerodynamically. Ⅱ: turbulence as a source of sound[J]. Proceedings of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences, 1954, 222: 1-32.
    [19] CURLE N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences, 1955, 231: 505-514. http://www.ams.org/mathscinet-getitem?mr=75022
    [20] FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surface in arbitrary motion[J]. Philosophical Transactions on the Royal Society of London, Series A: Mathematical and Physical Sciences, 1969, 264: 321-342. http://www.researchgate.net/publication/312676306_Sound_radiation_from_turbulence_and_surfaces_in_arbitrary_motion
    [21] PHILLIPS O M. On the generation of sound by supersonic turbulent shear layers[J]. Journal of Fluid Mechanics, 1960, 9: 1-28. doi: 10.1017/S0022112060000888
    [22] POWELL A. Theory of vortex sound[J]. Journal of Acoustic Society of America, 1964, 36: 177-195. doi: 10.1121/1.1918931
    [23] HOWE M S. Theory of Vortex Sound[M]. Cambridge: Cambridge University Press, 2003.
    [24] LILLEY G M. Radiated noise from isotropic turbulence with applications to the theory of jet noise[J]. Journal of Sound and Vibration, 1996, 190(3): 463-476. doi: 10.1006/jsvi.1996.0074
    [25] DOAK P E. Analysis of internally generated sound in continuous materials: 2. A critical review of the conceptual adequacy and physical scopes of existing theories of aerodynamic noise, with special reference to supersonic jet noise[J]. Journal of Sound and Vibration, 1972, 25(2): 263-335. doi: 10.1016/0022-460X(72)90435-X
    [26] OBERMEIER F. On a new representation of aeroacoustic source distribution: I. Gerneral theory[J]. Acoustica, 1979, 42(1): 56-61.
    [27] OBERMEIER F. On a new representation of aeroacoustic source distribution: Ⅱ. Two-dimensional model flows[J]. Acoustica, 1979, 42(1): 62-71. http://www.ams.org/mathscinet-getitem?mr=531237
    [28] MULLER E A, OBERMEIER F. Vortex sound[J]. Fluid Dynamics Research, 1988, 3(1-4): 43. doi: 10.1016/0169-5983(88)90042-1
    [29] FARASSAT F. Derivation of formulations 1 and 1A of Farassat[R]. Washington DC: National Aeronautics and Space Administration, 2007. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=BB4DB519C8BFA47DA385D6C064742FC7?doi=10.1.1.734.3641&rep=rep1&type=pdf
    [30] BRENTNER K S, FARASSAT F. Modelling aerodynamically generated sound of helicopter rotors[J]. Progress in Aerospace Sciences, 2003, 39: 83-120. doi: 10.1016/S0376-0421(02)00068-4
    [31] NAJAFI-YAZDI A, BRÈS G A, MONGEAU L. An acoustic analogy formulation for moving sources in uniformly moving media[J]. Proceedings of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences, 2011, 467: 144-165. http://rspa.royalsocietypublishing.org/content/467/2125/144.abstract
    [32] 张亚东, 张继业, 李田, 等. 拖车转向架气动噪声数值研究[J]. 机械工程学报, 2016, 52(16): 106-116. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201616015.htm

    ZHANG Ya-dong, ZHANG Ji-ye, LI Tian, et al. Numerical research on aerodynamic noise of trailer bogie[J]. Journal of Mechanical Engineering, 2016, 52(16): 106-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201616015.htm
    [33] 朱剑月, 王毅刚, 杨志刚, 等. 高速列车转向架区域裙板对流场与气动噪声的影响[J]. 同济大学学报(自然科学版), 2017, 45(10): 1512-1521. doi: 10.11908/j.issn.0253-374x.2017.10.014

    ZHU Jian-yue, WANG Yi-gang, YANG Zhi-gang, et al. Effect of bogie fairing on flow and aerodynamic noise behaviour around bogie of high-speed train[J]. Journal of Tongji University (Natural Science), 2017, 45(10): 1512-1521. (in Chinese) doi: 10.11908/j.issn.0253-374x.2017.10.014
    [34] ZHU J Y, HU Z W, THOMPSON D J. The effect of a moving ground on the flow and aerodynamic noise behaviour of a simplified high-speed train bogie[J]. International Journal of Rail Transportation, 2017, 5(2): 110-125. doi: 10.1080/23248378.2016.1212677
    [35] ZHU J Y. Aerodynamic noise of high-speed train bogies[D]. Southampton: University of Southampton, 2015.
    [36] ZHU Chun-li, HEMIDA H, FLYNN D, et al. Numerical simulation of the slipstream and aeroacoustic field around a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(6): 740-756. doi: 10.1177/0954409716641150
    [37] TAN X M, YANG Z G, TAN X M, et al. Vortex structures and aeroacoustic performance of the flow field of the pantograph[J]. Journal of Sound and Vibration, 2018, 432: 17-32. doi: 10.1016/j.jsv.2018.06.025
    [38] 刘加利, 于梦阁, 田爱琴, 等. 高速列车受电弓气动噪声特性研究[J]. 机械工程学报, 2018, 54(4): 231-237. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804034.htm

    LIU Jia-li, YU Meng-ge, TIAN Ai-qin, et al. Study on the aerodynamic noise characteristics of the pantograph of the high-speed train[J]. Journal of Mechanical Engineering, 2018, 54(4): 231-237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804034.htm
    [39] 高阳, 李启良, 陈羽, 等. 高速列车头型近场与远场噪声预测[J]. 同济大学学报(自然科学版), 2019, 47(1): 124-129. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201901016.htm

    GAO Yang, LI Qi-liang, CHEN Yu, et al. Prediction of near field and far field noise for high-speed train head shape[J]. Journal of Tongji University (Natural Science), 2019, 47(1): 124-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201901016.htm
    [40] 莫晃锐, 安翼, 刘青泉. 高速列车车体长度对气动噪声影响的数值研究[J]. 力学学报, 2019, 51(5): 1310-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201905004.htm

    MO Huang-rui, AN Yi, LIU Qing-quan. Influence of the length of high-speed train on the far-field aeroacoustics characteristics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1310-1320. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201905004.htm
    [41] ZHAO Yue-ying, YANG Zhi-gang, LI Qi-liang, et al. Analysis of the near-field and far-field sound pressure generated by high-speed trains pantograph system[J]. Applied Acoustics, 2020, 169: 1-15. http://www.sciencedirect.com/science/article/pii/S0003682X20306101
    [42] CHEN S Y, DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30: 329-364. doi: 10.1146/annurev.fluid.30.1.329
    [43] MASSON E, PARADOT N, ALLAIN E. The numerical prediction of the aerodynamic noise of the TGV POS high-speed train power car[J]. Noise and Vibration Mitigation for Rail Transportation Systems, 2010, 118: 437-444. doi: 10.1007/978-4-431-53927-8_52
    [44] MESKINE M, PÉROT F, KIM M S, et al. Community noise prediction of digital high speed train using LBM[C]//AIAA. 19th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2013: 1-17.
    [45] 张楠, 李亚, 王志鹏, 等. 基于LES与Powell涡声理论的孔腔流激噪声数值模拟研究[J]. 船舶力学, 2015, 19(11): 1393-1408. doi: 10.3969/j.issn.1007-7294.2015.11.013

    ZHANG Nan, LI Ya, WANG Zhi-peng, et al. Numerical simulation on the flow induced noise of cavity by LES and Powell vortex sound theory[J]. Journal of Ship Mechanics, 2015, 19(11): 1393-1408. (in Chinese) doi: 10.3969/j.issn.1007-7294.2015.11.013
    [46] 郑拯宇, 李人宪. 高速列车表面气动噪声偶极子声源分布数值分析[J]. 西南交通大学学报, 2011, 46(6): 996-1002. doi: 10.3969/j.issn.0258-2724.2011.06.018

    ZHENG Zheng-yu, LI Ren-xian. Numerical analysis of aerodynamic dipole source on high-speed train surface[J]. Journal of Southwest Jiaotong University, 2011, 46(6): 996-1002. (in Chinese) doi: 10.3969/j.issn.0258-2724.2011.06.018
    [47] 袁磊, 李人宪. 高速列车气动噪声及影响[J]. 机械工程与自动化, 2013(5): 31-33, 36. doi: 10.3969/j.issn.1672-6413.2013.05.013

    YUAN Lei, LI Ren-xian. Aerodynamic noise of high-speed train and its impact[J]. Mechanical Engineering and Automation, 2013(5): 31-33, 36. (in Chinese) doi: 10.3969/j.issn.1672-6413.2013.05.013
    [48] 罗乐, 郑旭, 吕义, 等. 考虑受电弓系统的高速列车气动噪声分析[J]. 浙江大学学报(工学版), 2015, 49(11): 2179-2185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201511020.htm

    LUO Le, ZHENG Xu, LYU Yi, et al. Aerodynamic noise analysis of high-speed train with pantograph system[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(11): 2179-2185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201511020.htm
    [49] THOMPSON D J, SMITH M G, COUDRET F. Application of a component-based approach to modelling the aerodynamic noise from high-speed trains[C]//Springer. Proceedings of the 10th International Workshop on Railway Noise. Berlin: Springer, 2010: 427-435.
    [50] IGLESIAS E L, THOMPSON D J, SMITH M. Component-based model to predict aerodynamic noise from high-speed train pantographs[J]. Journal of Sound and Vibration, 2017, 394: 280-305. doi: 10.1016/j.jsv.2017.01.028
    [51] HASSAN M, LABRAGA L, KEIRSBULCK L. Aero-acoustic oscillations inside large deep cavities[C]//The University of Queensland. 16th Australasian Fluid Mechanics Conference. Brisbane: The University of Queensland, 2007: 421-428.
    [52] SCHULTE-WERNING B, HEINE C, MATSCHKE G. Unsteady wake flow characteristics of high-speed trains[J]. PAMM Proceedings Applied Maths and Mechanics, 2003, 2(1): 332-333. doi: 10.1002/pamm.200310150
    [53] BELL J R, BURTON D, THOMPSON A H, et al. Flow topology and unsteady features in the wake of a generic high-speed train[J]. Journal of Fluids and Structures, 2016, 61: 168-183. doi: 10.1016/j.jfluidstructs.2015.11.009
    [54] BELL J R, BURTON D, THOMPSON A H, et al. Dynamics of trailing vortices in the trailing vortices in the wake of a generic high-speed train[J]. Journal of Fluids and Structures, 2016, 65: 238-256. doi: 10.1016/j.jfluidstructs.2016.06.003
    [55] 杨志刚, 高喆, 陈羽, 等. 裙板安装对高速列车气动性能影响的数值分析[J]. 计算机辅助工程, 2010, 19(3): 16-21. doi: 10.3969/j.issn.1006-0871.2010.03.004

    YANG Zhi-gang, GAO Zhe, CHEN Yu, et al. Numerical analysis on influence on aerodynamic performance of high-speed train caused by installation of skirt plates[J]. Computer Aided Engineering, 2010, 19(3): 16-21. (in Chinese) doi: 10.3969/j.issn.1006-0871.2010.03.004
    [56] 黄莎, 杨明智, 李志伟, 等. 高速列车转向架部位气动噪声数值模拟及降噪研究[J]. 中南大学学报, 2011, 42(12): 3899-3904. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201112049.htm

    HUANG Sha, YANG Ming-zhi, LI Zhi-wei, et al. Aerodynamic noise numerical simulation and noise reduction of high speed train bogie section[J]. Journal of Central South University, 2011, 42(12): 3899-3904. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201112049.htm
    [57] TORⅡ A, ITO J. Development of the series 700 Shinkansen train-set, improvement of noise level[C]//WCRR. Proceedings of World Congress on Railway Research 1999. Paris: WCRR, 1999: 1-10.
    [58] KURITA T. Development of external-noise reduction technologies for Shinkansen high-speed trains[J]. Journal of Environment and Engineering, 2011, 6(4): 805-819. doi: 10.1299/jee.6.805
    [59] 肖友刚, 时彧. 高速列车受电弓绝缘子的气动噪声计算及外形优化[J]. 铁道科学与工程学报, 2012, 9(6): 72-76. doi: 10.3969/j.issn.1672-7029.2012.06.013

    XIAO You-gang, SHI Yu. Aerodynamic noise calculation and shape optimization of high-speed train pantograph insulators[J]. Journal of Railway Science and Engineering, 2012, 9(6): 72-76. (in Chinese) doi: 10.3969/j.issn.1672-7029.2012.06.013
    [60] 张亚东, 韩璐, 李明, 等. 高速列车受电弓气动噪声降噪[J]. 机械工程学报, 2017, 53(6): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201706014.htm

    ZHANG Ya-dong, HAN Lu, LI Ming, et al. Reduction of aerodynamic noise of high-speed train pantograph[J]. Journal of Mechanical Engineering, 2017, 53(6): 94-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201706014.htm
    [61] 徐志龙, 刘海涛, 王超文, 等. 高速列车受电弓杆件减阻降噪研究分析[J]. 华东交通大学学报, 2020, 37(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT202002001.htm

    XU Zhi-long, LIU Hai-tao, WANG Chao-wen, et al. Study on drag and noise reduction of pantograph rods in high speed train[J]. Journal of East China Jiaotong University, 2020, 37(2): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT202002001.htm
    [62] 黄凯莉, 袁天辰, 杨俭, 等. 基于射流的高速列车受电弓空腔气动噪声降噪方法[J]. 铁道学报, 2020, 42(7): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007008.htm

    HUANG Kai-li, YUAN Tian-chen, YANG Jian, et al. Approach of reduction of aerodynamic noise of pantograph cavity of high-speed train based on jet[J]. Journal of the China Railway Society, 2020, 42(7): 50-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007008.htm
    [63] SAGAWA A, ONO S, HIDETOSHI H, et al. Aeroacoustic noise generated from high-speed trains in Japan[C]//AIAA. Aeroacoustics Conference and Exhibit. Reston: AIAA, 1999: 1-10.
    [64] 孙艳军, 梅元贵. 国外动车组受电弓的气动噪声介绍[J]. 铁道机车车辆, 2008, 28(5): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200805010.htm

    SUN Yan-jun, MEI Yuan-gui. Introduction of aerodynamic noise generated by foreign EMUs pantograph[J]. Railway Locomotive and Car, 2008, 28(5): 32-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200805010.htm
    [65] IKEDA M, MITAUMOJI T, SUEJKI T, et al. Aerodynamic noise reduction of a pantograph by shape-smoothing of panhead and its support and by the surface covering with porous material[J]. Noise and Vibration Mitigation for Rail Transportation Systems, 2010, 118: 419-426. doi: 10.1007/978-4-431-53927-8_50
    [66] WAKANAYASHI Y, KURITA T, YAMADA H, et al. Noise measurement results of Shinkansen high-speed test train[C]//Springer. 9th International Workshop on Railway Noise. Berlin: Springer, 2007: 1-6.
    [67] 黄莎, 梁习锋, 杨明智. 高速列车车辆连接部位气动噪声数值模拟及降噪研究[J]. 空气动力学学报, 2012, 30(2): 254-259. doi: 10.3969/j.issn.0258-1825.2012.02.022

    HUANG Sha, LIANG Xi-feng, YANG Ming-zhi. Numerical simulation of aerodynamic noise and noise reduction of high-speed train connection section[J]. Acta Aerodynamica Sinica, 2012, 30(2): 254-259. (in Chinese) doi: 10.3969/j.issn.0258-1825.2012.02.022
    [68] 刘国庆, 杜健, 刘加利, 等. 车端风挡类型对高速列车气动噪声影响规律的研究[J]. 噪声与振动控制, 2018, 38(2): 87-101. doi: 10.3969/j.issn.1006-1355.2018.02.018

    LIU Guo-qing, DU Jian, LIU Jia-li, et al. Investigation on the influence of inter-car windshield types on the aerodynamic noise of high speed trains[J]. Noise and Vibration Control, 2018, 38(2): 87-101. (in Chinese) doi: 10.3969/j.issn.1006-1355.2018.02.018
    [69] 赵月影, 杨志刚, 李启良. 高速列车车厢连接处脉动压力分析与控制[J]. 声学技术, 2019, 38(5): 568-573. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201905017.htm

    ZHAO Yue-ying, YANG Zhi-gang, LI Qi-liang. Analysis and control of the fluctuation pressure at inter-coach space of high-speed train[J]. Technical Acoustics, 2019, 38(5): 568-573. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201905017.htm
    [70] 田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6(1): 1-9. doi: 10.3321/j.issn:1671-1637.2006.01.001

    TIAN Hong-qi. Development of research on aerodynamics of high-speed rails in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 1-9. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.01.001
    [71] 杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45: 217-458. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500007.htm

    YANG Guo-wei, WEI Yu-jie, ZHAO Gui-lin, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45: 217-458. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500007.htm
    [72] SUN Zhen-xu, YAO Shuai-bao, WEI Lian-yi, et al. Numerical investigation on the influence of the streamlined structures of the high-speed train's nose on aerodynamic performances[J]. Applied Sciences, 2021, 11: 1-22. http://www.researchgate.net/publication/348530683_Numerical_Investigation_on_the_Influence_of_the_Streamlined_Structures_of_the_High-Speed_Train's_Nose_on_Aerodynamic_Performances
    [73] 安翼, 莫晃锐, 刘青泉. 高速列车头型长细比对气动噪声的影响[J]. 力学学报, 2017, 49(5): 985-996. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201705003.htm

    AN Yi, MO Huang-rui, LIU Qing-quan. Study on the influence of the nose slenderness ratio of high-speed train on the aerodynamic noise[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 985-996. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201705003.htm
    [74] THOMPSON D J. Railway Noise and Vibration: Mechanisms, Modelling and Means of Control[M]. Amsterdam: Elsevier, 2009.
  • 加载中
图(24)
计量
  • 文章访问数:  1432
  • HTML全文浏览量:  381
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-23
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回