留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扣件胶垫黏弹性对铁路箱梁振动与结构噪声的影响

刘林芽 崔巍涛 秦佳良 刘全民 宋立忠

刘林芽, 崔巍涛, 秦佳良, 刘全民, 宋立忠. 扣件胶垫黏弹性对铁路箱梁振动与结构噪声的影响[J]. 交通运输工程学报, 2021, 21(3): 134-145. doi: 10.19818/j.cnki.1671-1637.2021.03.007
引用本文: 刘林芽, 崔巍涛, 秦佳良, 刘全民, 宋立忠. 扣件胶垫黏弹性对铁路箱梁振动与结构噪声的影响[J]. 交通运输工程学报, 2021, 21(3): 134-145. doi: 10.19818/j.cnki.1671-1637.2021.03.007
LIU Lin-ya, CUI Wei-tao, QIN Jia-liang, LIU Quan-min, SONG Li-zhong. Effects of rail pad viscoelasticity on vibration and structure-borne noise of railway box girder[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 134-145. doi: 10.19818/j.cnki.1671-1637.2021.03.007
Citation: LIU Lin-ya, CUI Wei-tao, QIN Jia-liang, LIU Quan-min, SONG Li-zhong. Effects of rail pad viscoelasticity on vibration and structure-borne noise of railway box girder[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 134-145. doi: 10.19818/j.cnki.1671-1637.2021.03.007

扣件胶垫黏弹性对铁路箱梁振动与结构噪声的影响

doi: 10.19818/j.cnki.1671-1637.2021.03.007
基金项目: 

国家自然科学基金项目 51968025

国家自然科学基金项目 52068030

国家自然科学基金项目 52008169

江西省自然科学基金项目 20192ACBL20009

江西省青年科学基金项目 20202BABL214048

江西省教育厅科学技术研究项目 GJJ200658

详细信息
    作者简介:

    刘林芽(1973-),男,江西樟树人,华东交通大学教授,工学博士,从事轨道交通环境振动与噪声研究

  • 中图分类号: U233

Effects of rail pad viscoelasticity on vibration and structure-borne noise of railway box girder

Funds: 

National Natural Science Foundation of China 51968025

National Natural Science Foundation of China 52068030

National Natural Science Foundation of China 52008169

Natural Science Foundation of Jiangxi Province 20192ACBL20009

Science Foundation for Young Scholars of Jiangxi Province 20202BABL214048

Science and Technology Research Project of Jiangxi Education Department GJJ200658

More Information
  • 摘要: 以高速铁路WJ-7B型扣件胶垫为研究对象,通过动态力学性能试验测试了扣件胶垫在不同温度下的动力性能;结合温频等效原理、Williams-Landel-Ferry方程和高阶分数导数FVMP模型表征了扣件胶垫的黏弹性力学特性;将该模型代入建立的桥梁振动与结构噪声预测有限元-边界元模型,并与Kelvin-Vogit模型对比来分析扣件胶垫黏弹性对箱梁振动和结构噪声的影响。研究结果表明:扣件胶垫黏弹性表现为动参数的温频变特性,刚度与频率正相关,与温度负相关,阻尼与频率和温度均负相关,阻尼在1~100 Hz内变化明显,在100 Hz以上变化较小;扣件动参数测试值与高阶分数导数FVMP模型拟合值吻合良好,采用高阶分数导数FVMP模型可以准确描述扣件在宽温宽频下的动态黏弹性力学行为;仅考虑扣件胶垫频变特性时,桥梁在25~63 Hz振动加剧,在80~200 Hz振动减弱,在峰值频率63 Hz处顶板、腹板和底板的加速度振级分别增大5.62、0.91和2.94 dB,桥梁横桥向各板垂向近场点和梁底下方靠近地面处声辐射明显增大;同时考虑扣件胶垫温变与频变特性时,随着温度的降低,桥梁在31.5~50.0 Hz振动不断减小,在63~200 Hz振动不断增大,桥梁横桥向在顶板斜上方、腹板和底板垂向近场点和梁底下方靠近地面处声辐射减小,温度从20 ℃降到-20 ℃时,总体声压级最大降低了2 dB左右;忽略扣件胶垫黏弹性会导致桥梁振动和结构噪声预测产生偏差,仿真分析时应考虑扣件胶垫的黏弹性,以提高预测的准确性。

     

  • 图  1  高阶分数导数FVMP模型

    Figure  1.  High-order fractional derivative FVMP model

    图  2  试验对象和设备

    Figure  2.  Test object and equipment

    图  3  扣件胶垫温变试验结果

    Figure  3.  Temperature-dependent test results of rail pad

    图  4  测试结果与拟合结果对比

    Figure  4.  Comparison of test and fitting results

    图  5  扣件胶垫在1~10 000 Hz和不同温度下的刚度和阻尼

    Figure  5.  Stiffnesses and dampings of rail pad under 1-10 000 Hz and different temperatures

    图  6  车辆-轨道-桥梁耦合系统垂向模型

    Figure  6.  Vertical model of vehicle-track-bridge coupling system

    图  7  扣件力

    Figure  7.  Fastener forces

    图  8  轨道-桥梁有限元模型

    Figure  8.  Track-bridge finite element model

    图  9  桥梁振型

    Figure  9.  Bridge vibration modes

    图  10  桥梁跨中截面振动响应输出点

    Figure  10.  Vibration response output points in midspan section of bridge

    图  11  输出点加速度振级频谱

    Figure  11.  Vibration acceleration spectra of output points

    图  12  桥梁边界元模型与场点网格

    Figure  12.  Bridge boundary element model and field point grid

    图  13  桥梁跨中截面场点

    Figure  13.  Field points in midspan section of bridge

    图  14  场点声压级频谱曲线

    Figure  14.  Spectrum curves of sound pressure levels of field points

    图  15  总体声压级云图

    Figure  15.  Overall sound pressure level contours

    表  1  高阶分数导数FVMP模型拟合参数

    Table  1.   Fitting parameters of high-order fractional derivative FVMP model

    温度/℃ μ1 η1 μ2 η2 α β γ
    20 12.9 6.63 1.53 20.1 0.48 0.55 0.14
    0 13.6 2.92 4.96 30.2 0.46 0.56 0.22
    -20 13.1 2.61 5.11 11.9 0.44 0.59 0.31
    下载: 导出CSV

    表  2  计算工况

    Table  2.   Calculation conditions

    工况编号 温度/℃ 刚度和阻尼
    1 20 常量
    2 20 频变
    3 0 频变
    4 -20 频变
    下载: 导出CSV

    表  3  CRH380高速列车动力学参数

    Table  3.   Dynamics parameters of CRH380 high-speed train

    动力学参数 数值
    车体质量/kg 3.89×104
    转向架质量/kg 3.06×103
    轮对质量/kg 1.52×103
    车体点头转动惯量/(kg·m2) 1.91×106
    转向架点头转动惯量/(kg·m2) 3.20×103
    一系悬挂刚度/(kN·m-1) 1772
    一系悬挂阻尼/(kN·s·m-1) 20
    二系悬挂刚度/(kN·m-1) 4500
    二系悬挂阻尼/(kN·s·m-1) 20
    车辆定距/m 17.5
    固定轴距/m 2.5
    下载: 导出CSV

    表  4  轨道和桥梁动力学参数

    Table  4.   Dynamics parameters of track and bridge

    动力学参数 数值
    钢轨弹性模量/Pa 2.060×1011
    钢轨截面惯性矩/m4 3.217×10-5
    钢轨单位长度质量/(kg·m-1) 60.64
    扣件间距/m 0.64
    轨道板质量/kg 7.956×103
    轨道板弹性模量/Pa 3.450×1010
    轨道板长度/m 6.4
    轨道板宽度/m 2.55
    轨道板高度/m 0.2
    CA砂浆弹性模量/Pa 9.000×108
    CA砂浆分布阻尼/(N·s·m-2) 2.220×105
    一跨桥梁长度/m 32
    桥梁弹性模量/Pa 3.450×1010
    桥梁截面惯性矩/m4 6.196 4
    桥梁单位长度质量/(kg·m-1) 1.182×104
    桥梁阻尼比 0.05
    下载: 导出CSV

    表  5  桥梁自振频率与振型

    Table  5.   Natural frequencies and modes of bridge vibration

    阶数 频率/Hz 振型
    1 4.02 横向侧倾
    2 5.70 一阶竖弯
    3 12.74 整体竖弯+侧倾
    4 13.03 一阶反对称弯曲
    5 13.85 整体扭转
    6 18.25 二阶反对称弯曲
    7 21.30 扭转+侧倾
    8 25.19 顶板和翼缘局部振动
    9 25.28 顶板和翼缘局部振动
    10 26.10 顶板和翼缘局部振动
    下载: 导出CSV
  • [1] LIU Quan-min, THOMPSON J, XU Pei-pei, et al. Investigation of train-induced vibration and noise from a steel-concrete composite railway bridge using a hybrid finite element-statistical energy analysis method[J]. Journal of Sound and Vibration, 2020, 471: 115197. doi: 10.1016/j.jsv.2020.115197
    [2] LI Qi, XU You-lin, WU Ding-jun. Concrete bridge-borne low-frequency noise simulation based on train-track-bridge dynamic interaction[J]. Journal of Sound and Vibration, 2012, 331(10): 2457-2470. doi: 10.1016/j.jsv.2011.12.031
    [3] LIU Lin-ya, ZUO Zhi-yuan, ZHOU Yun-lai, et al. Insights into the effect of WJ-7 fastener rubber pad to vehicle-rail-viaduct coupled dynamics[J]. Applied Sciences, 2020, 10(5): 1889. doi: 10.3390/app10051889
    [4] 雷晓燕, 张新亚, 罗锟. 高架轨道桥梁结构振动与噪声预测方法及控制研究进展[J]. 铁道学报, 2020, 42(12): 150-161. doi: 10.3969/j.issn.1001-8360.2020.12.020

    LEI Xiao-yan, ZHANG Xin-ya, LUO Kun. Research progress on prediction methods and control of vibration and noise of elevated track bridge structure[J]. Journal of the China Railway Society, 2020, 42(12): 150-161. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.12.020
    [5] 张天琦, 罗雁云, 周力. 腹板开孔对轨道交通箱梁振动噪声的影响[J]. 交通运输工程学报, 2019, 19(4): 35-46. doi: 10.3969/j.issn.1671-1637.2019.04.004

    ZHANG Tian-qi, LUO Yan-yun, ZHOU Li. Effect of web hole on vibration and noise of rail transit box girder[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 35-46. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.04.004
    [6] ROSSI L, PRATO A, LESINA L, et al. Effects of low- frequency noise on human cognitive performances in laboratory[J]. Building Acoustics, 2018, 25(1): 17-33. doi: 10.1177/1351010X18756800
    [7] SONG Li-zhong, LI Xiao-zhen, ZHENG Jing, et al. Vibro-acoustic analysis of a rail transit continuous rigid frame box girder bridge based on a hybrid WFE-2D BE method[J]. Applied Acoustics, 2020, 157: 107028. doi: 10.1016/j.apacoust.2019.107028
    [8] 刘林芽, 秦佳良, 雷晓燕, 等. 基于响应面法的槽形梁结构噪声优化研究[J]. 振动与冲击, 2018, 37(20): 56-60, 80. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201820009.htm

    LIU Lin-ya, QIN Jia-liang, LEI Xiao-yan, et al. A study on optimization of the structure-borne noise from a trough girder based on response surface methodology[J]. Journal of Vibration and Shock, 2018, 37(20): 56-60, 80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201820009.htm
    [9] NELSON J T. Recent development in ground-borne noise and vibration control[J]. Journal of Sound and Vibration, 1996, 193(1): 367-376. doi: 10.1006/jsvi.1996.0277
    [10] 李增光, 吴天行. 铁道车辆-轨道-高架桥耦合系统振动功率流分析[J]. 振动与冲击, 2010, 29(11): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201011018.htm

    LI Zeng-guang, WU Tian-xing. Analysis of vibration power flow for a railway vehicle-track-viaduct coupled system[J]. Journal of Vibration and Shock, 2010, 29(11): 78-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201011018.htm
    [11] 张迅, 苏斌, 李小珍. 扣件刚度与阻尼对铁路箱梁车致振动噪声的影响研究[J]. 振动与冲击, 2015, 34(15): 150-155. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201515028.htm

    ZHANG Xun, SU Bin, LI Xiao-zhen. Effects of fastener stiffness and damping on structure-borne noise of railway box-girders[J]. Journal of Vibration and Shock, 2015, 34(15): 150-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201515028.htm
    [12] 李小珍, 宋立忠, 张迅. 基于现场锤击试验的高铁简支箱梁振动传递特性研究[J]. 土木工程学报, 2016, 49(5): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201605012.htm

    LI Xiao-zhen, SONG Li-zhong, ZHANG Xun. Study on vibration transmission characteristic of high-speed railway simply-supported box-girders based on in-situ hammer excitation test[J]. China Civil Engineering Journal, 2016, 49(5): 120-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201605012.htm
    [13] JIANG Han-wen, GAO Liang. Analysis of the vibration characteristics of ballastless track on bridges using an energy method[J]. Applied Sciences, 2020, 10(7): 2289. doi: 10.3390/app10072289
    [14] 袁菁江, 唐进锋, 刘文峰, 等. 客货共线铁路桥上减振型CRTS Ⅲ板式无砟轨道减振层刚度动力学影响分析[J]. 铁道科学与工程学报, 2019, 16(7): 1614-1621. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201907002.htm

    YUAN Jing-jiang, TANG Jin-feng, LIU Wen-feng, et al. Dynamic effect analysis of damping layer stiffness of vibration reducing CRTS Ⅲ slab ballastless track on mixed passenger and freight railway bridge[J]. Journal of Railway Science and Engineering, 2019, 16(7): 1614-1621. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201907002.htm
    [15] 徐浩, 蔡文锋, 林红松, 等. 重载铁路桥上无砟轨道扣件关键参数研究[J]. 铁道工程学报, 2019(8): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201908009.htm

    XU Hao, CAI Wen-feng, LIN Hong-song, et al. Research on the key parameters of fastener system for ballastless track on heavy-haul railway bridge[J]. Journal of Railway Engineering Society, 2019(8): 40-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201908009.htm
    [16] WEI Kai, YANG Qi-lu, DOU Yin-ling, et al. Experimental investigation into temperature- and frequency-dependent dynamic properties of high-speed rail pads[J]. Construction and Building Materials, 2017, 151: 848-858. http://www.sciencedirect.com/science/article/pii/S0950061817311844
    [17] WEI Kai, DOU Yin-ling, WANG Feng, et al. High-frequency random vibration analysis of a high-speed vehicle-track system with the frequency-dependent dynamic properties of rail pads using a hybrid SEM-SM method[J]. Vehicle System Dynamics, 2018, 56(12): 1838-1863. http://smartsearch.nstl.gov.cn/paper_detail.html?id=bca1cfc54d6eb32f4f7f7c8d2495f1a6
    [18] OREGUI M, MAN A D, WOLDEKIDAN M F, et al. Obtaining rail pad properties via dynamic mechanical analysis[J]. Journal of Sound and Vibration, 2016, 363: 460-472. http://www.sciencedirect.com/science/article/pii/S0022460X15009050
    [19] 韦凯, 王丰, 杨麒陆, 等. 钢轨扣件弹性垫板的宽频动力性能及其理论表征[J]. 铁道学报, 2019, 41(2): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201902019.htm

    WEI Kai, WANG Feng, YANG Qi-lu, et al. Broad frequency-domain dynamic properties of rail pad and its theoretical model[J]. Journal of the China Railway Society, 2019, 41(2): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201902019.htm
    [20] ZHU Sheng-yang, CAI Cheng-biao, LUO Zhen, et al. A frequency and amplitude dependent model of rail pads for the dynamic analysis of train-track interaction[J]. Science China Technological Sciences, 2015, 58(2): 191-201. doi: 10.1007/s11431-014-5686-y
    [21] ZOPF C, HOQUE S E, KALISKE M. Comparison of approaches to model viscoelasticity based on fractional time derivatives[J]. Computational Materials Science, 2015, 98: 287-296. http://www.sciencedirect.com/science/article/pii/S0927025614007794
    [22] 张大伟, 翟婉明, 朱胜阳, 等. 基于橡胶弹簧非线性模型的重载车辆轮轨动力特征分析[J]. 铁道学报, 2016, 38(12): 19-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201612004.htm

    ZHANG Da-wei, ZHAI Wan-ming, ZHU Sheng-yang, et al. Wheel-rail dynamic interaction between heavy-haul freight car and ballasted track based on a nonlinear rubber spring model[J]. Journal of the China Railway Society, 2016, 38(12): 19-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201612004.htm
    [23] 赵永玲, 侯之超. 基于分数导数的橡胶材料两种粘弹性本构模型[J]. 清华大学学报(自然科学版), 2013, 53(3): 378-383. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201303017.htm

    ZHAO Yong-ling, HOU Zhi-chao. Two viscoelastic constitutive model of rubber materials using fractional derivations[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(3): 378-383. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201303017.htm
    [24] 刘林芽, 卢沛君, 秦佳良. 基于扣件FVMP模型的车-轨耦合随机振动分析[J]. 铁道学报, 2019, 41(5): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201905013.htm

    LIU Lin-ya, LU Pei-jun, QIN Jia-liang. Random vibration analysis of vehicle-track coupling system based on fastener FVMP model[J]. Journal of the China Railway Society, 2019, 41(5): 93-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201905013.htm
    [25] MAES J, SOL H, GUILLAUME P. Measurements of the dynamic railpad properties[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 557-565. http://www.sciencedirect.com/science/article/pii/S0022460X05007625
    [26] 蔡成标, 翟婉明, 王其昌. 高速列车与高架桥上无碴轨道相互作用研究[J]. 铁道工程学报, 2000(3): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200003015.htm

    CAI Cheng-biao, ZHAI Wan-ming, WANG Qi-chang. Research on vertical interactions between high-speed train and ballastless track on bridge[J]. Journal of Railway Engineering Society, 2000(3): 29-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200003015.htm
    [27] 陈果. 车辆-轨道耦合系统随机振动分析[D]. 成都: 西南交通大学, 2000.

    CHEN Guo. The analysis on random vibration of vehicle/track coupling system[D]. Chengdu: Southwest Jiaotong University, 2000. (in Chinses
    [28] 蔡成标, 翟婉明, 赵铁军, 等. 列车通过路桥过渡段时的动力作用研究[J]. 交通运输工程学报, 2001, 1(1): 17-19, 28. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200101003.htm

    CAI Cheng-biao, ZHAI Wan-ming, ZHAO Tie-jun, et al. Research on dynamic interaction of train and track on roadbed-bridge transition section[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 17-19, 28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200101003.htm
    [29] 刘林芽, 秦佳良, 雷晓燕, 等. 基于声传递向量法的槽形梁结构低频噪声研究[J]. 振动与冲击, 2018, 37(19): 132-138, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201819022.htm

    LIU Lin-ya, QIN Jia-liang, LEI Xiao-yan, et al. Low frequency noise of a trough girder structure based on acoustic transfer vector method[J]. Journal of Vibration and Shock, 2018, 37(19): 132-138, 152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201819022.htm
    [30] LI Qi, WU Ding-jun. Analysis of the dominant vibration frequencies of rail bridges for structure-borne noise using a power flow method[J]. Journal of Sound and Vibration, 2013, 332(18): 4153-4163. http://www.sciencedirect.com/science/article/pii/S0022460X13001934
    [31] 李小珍, 张迅, 刘全民, 等. 铁路32 m混凝土简支箱梁结构噪声试验研究[J]. 中国铁道科学, 2013, 34(3): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201303003.htm

    LI Xiao-zhen, ZHANG Xun, LIU Quan-min, et al. Experimental study on structure-borne noise of railway 32 m simply-supported concrete box-girder[J]. China Railway Science, 2013, 34(3): 20-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201303003.htm
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  540
  • HTML全文浏览量:  237
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-11
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回