留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速铁路桥梁全封闭声屏障结构噪声特性

郑净 李小珍 毕然 张效邦 贺浩楠 胡喆

郑净, 李小珍, 毕然, 张效邦, 贺浩楠, 胡喆. 高速铁路桥梁全封闭声屏障结构噪声特性[J]. 交通运输工程学报, 2021, 21(3): 179-192. doi: 10.19818/j.cnki.1671-1637.2021.03.011
引用本文: 郑净, 李小珍, 毕然, 张效邦, 贺浩楠, 胡喆. 高速铁路桥梁全封闭声屏障结构噪声特性[J]. 交通运输工程学报, 2021, 21(3): 179-192. doi: 10.19818/j.cnki.1671-1637.2021.03.011
ZHENG Jing, Li Xiao-zhen, BI Ran, ZHANG Xiao-bang, HE Hao-nan, HU Zhe. Structure-borne noise characteristics of fully-enclosed sound barriers on high-speed railway bridges[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 179-192. doi: 10.19818/j.cnki.1671-1637.2021.03.011
Citation: ZHENG Jing, Li Xiao-zhen, BI Ran, ZHANG Xiao-bang, HE Hao-nan, HU Zhe. Structure-borne noise characteristics of fully-enclosed sound barriers on high-speed railway bridges[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 179-192. doi: 10.19818/j.cnki.1671-1637.2021.03.011

高速铁路桥梁全封闭声屏障结构噪声特性

doi: 10.19818/j.cnki.1671-1637.2021.03.011
基金项目: 

国家自然科学基金项目 51878565

六安市定向委托产学研项目 2013LWA001

详细信息
    作者简介:

    郑净(1984-),女,安徽淮北人,皖西学院讲师,西南交通大学工学博士研究生,从事轨道交通减振降噪研究

    通讯作者:

    李小珍(1970-),男,湖南安仁人,西南交通大学教授,工学博士

  • 中图分类号: U24

Structure-borne noise characteristics of fully-enclosed sound barriers on high-speed railway bridges

Funds: 

National Natural Science Foundation of China 51878565

Lu'an Directional Entrusted Production, Learning and Research Projects 2013LWA001

More Information
  • 摘要: 开展了高速铁路桥梁和桥梁-全封闭声屏障典型结构断面的振动和噪声测试,建立了高速铁路桥梁-全封闭声屏障系统结构噪声的快速多极边界元法(FMBEM)数值预测模型,深入分析了板件的车致振动与结构噪声辐射的相关性和时频特性,并以此验证了FMBEM数值预测模型求解结构噪声的准确性;对比分析了有、无全封闭声屏障工况下32 m简支箱形梁桥结构噪声的空间和频域分布特性,并比较了FEBEM与边界元法(BEM)的计算效率。分析结果表明:桥梁-全封闭声屏障系统板件的振动与噪声的频谱分布规律基本一致;受全封闭声屏障隔声作用和梁体遮蔽作用的影响,距箱梁底板表面0.3 m处测得的噪声信号基本反映了底板的结构噪声特性,其余测点则不同程度地受到其他板件或轮轨系统辐射噪声的影响;计算与实测噪声的幅频特性吻合较好,峰值处计算误差在1.5 dB以内;全封闭声屏障的安装导致桥梁板件的振动和结构噪声均减小,也改变了桥梁周围的声场分布特性,桥梁板件表面场点的总声压级降低了0.8 dB,梁体下方地面场点总声压级增大了4.1~9.4 dB;梁体斜上方场点总声压级增大了9.6~18.1 dB,桥梁-全封闭声屏障结构顶部局部区域的结构噪声比无声屏障的桥梁大12.4 dB以上;FMBEM计算耗时为传统BEM的1/3,计算更为高效。

     

  • 图  1  测试线路全封闭声屏障设计

    Figure  1.  Design of fully-enclosed sound barrier on test line

    图  2  振动与噪声测点布置

    Figure  2.  Layout of measurement pointsfor vibration and noise

    图  3  不同测点振动加速度时程

    Figure  3.  Time histories of vibration accelerations at different measurement points

    图  4  振动加速度级1/3倍频程

    Figure  4.  Vibration acceleration levels in 1/3 octave bands

    图  5  不同断面典型测点的噪声时程

    Figure  5.  Time histories of noise at typical measurement points on different sections

    图  6  全封闭声屏障内部轮轨噪声1/3倍频程

    Figure  6.  Wheel-rail noise inside fully-enclosed sound barriers in 1/3 octave bands

    图  7  箱梁表面附近噪声1/3倍频程

    Figure  7.  Noise near surface of box girder in 1/3 octave bands

    图  8  地上1.2 m处噪声1/3倍频程

    Figure  8.  Noise at 1.2 m above ground in 1/3 octave bands

    图  9  轨上3.5 m处噪声1/3倍频程

    Figure  9.  Noise at 3.5 m above track in 1/3 octave bands

    图  10  FMBEM计算流程

    Figure  10.  Calculation flow of FMBEM

    图  11  有砟轨道模型

    Figure  11.  Ballasted track model

    图  12  桥梁-全封闭声屏障有限元模型

    Figure  12.  FE model of bridge-fully-enclosed sound barrier

    图  13  桥梁-全封闭声屏障FMBEM模型

    Figure  13.  FMBEM model of bridge-fully-enclosed sound barrier

    图  14  典型测点振动测试与数值结果对比

    Figure  14.  Comparison between vibration test and numerical results at typical measurement points

    图  15  典型测点声压级测试与数值结果对比

    Figure  15.  Comparison of sound pressure level between test and numerical results at typical measurement points

    图  16  有、无全封闭声屏障时桥梁辐射噪声

    Figure  16.  Radiation noise of bridge with and without fully-enclosed sound barrier

    图  17  桥梁-全封闭声屏障典型频段声压级

    Figure  17.  Sound pressure levels of bridge-fully-enclosed sound barrier at typical frequency bands

    表  1  现场测试断面和工况

    Table  1.   Field test sections and conditions

    断面 位置 工况 车速/(km·h-1) 测试内容
    桥梁-全封闭声屏障断面 Test 1 76、81、82 内部噪声、板件振动、板件噪声、地面和轨上噪声
    Test 2
    Test 3
    无声屏障断面 Test 4 60、66、59 板件振动、板件表面噪声、地面和轨上噪声
    Test 5
    Test 6
    下载: 导出CSV

    表  2  主要材料特性

    Table  2.   Main material characteristics

    材料 弹性模量/GPa 泊松比 密度/(kg·m-3) 阻尼
    钢材 206.0 0.30 7 850 0.010
    单元板 45.0 0.35 40 0.010
    混凝土 32.5 0.20 2 400 0.030
    下载: 导出CSV

    表  3  FMBEM与BEM计算效率对比

    Table  3.   Comparison of calculation efficiency between FMBEM and BEM

    节点数 单元数 频率/Hz 计算时间/s
    FMBEM BEM
    160 767 91 672 20.0 468.90 6 995.5
    25.0 398.00 3 524.0
    31.5 2 485.10 3 162.2
    40.0 956.80 3 262.8
    50.0 662.20 3 336.4
    63.0 1 186.10 3 454.9
    80.0 1 484.90 3 659.5
    100.0 75.00 3 953.3
    125.0 3 274.50 7 667.3
    160.0 5 43.77 9 421.4
    200.0 3 956.90 8 075.7
    250.0 4 468.80 6 082.6
    共计 21 378.00 62 656.4
    下载: 导出CSV
  • [1] LEE H M, WANG Zhao-meng, LIM K M, et al. A review of active noise control applications on noise barrier in three- dimensional/open space: myths and challenges[J]. Fluctuation and Noise Letters, 2019, 18(4): 1930002. doi: 10.1142/S0219477519300027
    [2] 陆维姗. 基于声场分布特性的高速铁路声屏障降噪效果研究[D]. 北京: 中国铁道科学研究院, 2019.

    LU Wei-shan. Research on noise reduction effect of high-speed railway sound barrier based on sound field distribution characteristics[D]. Beijing: China Academy of Railway Sciences, 2019. (in Chinese)
    [3] 李小珍, 杨得旺, 高慰, 等. 高速铁路半、全封闭声屏障振动与降噪效果研究[J]. 噪声与振动控制, 2018, 38(增1): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK2018S1010.htm

    LI Xiao-zhen, YANG De-wang, GAO Wei, et al. Study on vibration and noise reduction of semi- or fully-enclosed noise barriers of high-speed railways[J]. Noise and Vibration Control, 2018, 38(S1): 8-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK2018S1010.htm
    [4] ZHANG Xun, LIU Run, CAO Zhi-yang, et al. Acoustic performance of a semi-closed noise barrier installed on a high-speed railway bridge: measurement and analysis considering actual service conditions[J]. Measurement, 2019, 138: 386-399. doi: 10.1016/j.measurement.2019.02.030
    [5] LI Qi, XU You-lin, WU Ding-jun. Concrete bridge-borne low-frequency noise simulation based on train-track-bridge dynamic interaction[J]. Journal of Sound and Vibration, 2012, 331(10): 2457-2470. doi: 10.1016/j.jsv.2011.12.031
    [6] SONG Xiao-dong, LI Qi. Reconstruction of low-frequency bridge noise using an inverse modal acoustic transfer vector method[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019, 38(2): 224-243. doi: 10.1177/1461348418817095
    [7] 韩江龙, 吴定俊, 李奇. 城市轨道交通槽型梁结构噪声计算与分析[J]. 工程力学, 2013, 30(2): 190-195. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201302027.htm

    HAN Jiang-long, WU Ding-jun, LI Qi. Calculation and analysis of structure-born noise from urban rail transit trough girders[J]. Engineering Mechanics, 2013, 30(2): 190-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201302027.htm
    [8] 许代言, 刘林芽. 轨道交通双箱单室箱型梁结构改进后减振降噪效果分析[J]. 城市轨道交通研究, 2017(8): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201708008.htm

    XU Dai-yan, LIU Lin-ya. Analysis of vibration reduction and noise reduction effect of double box single cell box girder structure in rail transit[J]. Urban Rail Transit, 2017(8): 32-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201708008.htm
    [9] 刘林芽, 秦佳良, 刘全民, 等. 轨道交通槽形梁结构低频噪声预测与优化[J]. 铁道学报, 2018, 40(8): 107-115. doi: 10.3969/j.issn.1001-8360.2018.08.014

    LIU Lin-ya, QIN Jia-liang, LIU Quan-min, et al. Prediction and optimization of structure-borne low-frequency noise from a rail transit trough girder[J]. Journal of the China Railway Society, 2018, 40(8): 107-115. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.08.014
    [10] LIU Lin-ya, SONG Rui, ZHOU Yun-lai, et al. Noise and vibration mitigation performance of damping pad under CRTS-Ⅲ ballastless track in high speed rail viaduct[J]. KSCE Journal of Civil Engineering, 2019, 23(8): 3525-3534. doi: 10.1007/s12205-019-1947-4
    [11] 李克冰, 张楠, 夏禾, 等. 高速铁路32 m简支槽形梁桥结构噪声分析[J]. 中国铁道科学, 2015, 36(4): 52-59. doi: 10.3969/j.issn.1001-4632.2015.04.09

    LI Ke-bin, ZHANG Nan, XIA He, et al. Analysis on structure-borne noise of 32 m simply-supported trough girder bridge for high speed railway[J]. China Railway Science, 2015, 36(4): 52-59. (in Chinese) doi: 10.3969/j.issn.1001-4632.2015.04.09
    [12] 罗文俊, 程龙. 城市轨道交通单线U型梁振动与噪声分析[J]. 铁道工程学报, 2017, 34(5): 89-93. doi: 10.3969/j.issn.1006-2106.2017.05.016

    LUO Wen-jun, CHENG Long. Vibration and noise analysis of single line U beam in urban rail transit[J]. Journal of Railway Engineering Society, 2017, 34(5): 89-93. (in Chinese) doi: 10.3969/j.issn.1006-2106.2017.05.016
    [13] LI Xiao-zhen, ZHANG Xun, ZHANG Zhi-jun, et al. Experimental research on noise emanating from concrete box-girder bridges on intercity railway lines[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2013, 229(2): 125 -135.
    [14] 张迅, 王曦阳, 刘蕊, 等. U肋加劲板的声振特性研究[J]. 中国公路学报, 2020, 33(7): 76-85. doi: 10.3969/j.issn.1001-7372.2020.07.008

    ZHANG Xun, WANG Xi-yang, LIU Rui, et al. Vibro-acoustic characteristics of U-rib stiffened slab[J]. China Journal of Highway and Transport, 2020, 33(7): 76-85. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.07.008
    [15] LI Qi, SONG Xiao-dong, WU Ding-jun. A 2.5-dimensional method for the prediction of structure-borne low-frequency noise from concrete rail transit bridges[J]. Journal of the Acoustical Society of America, 2014, 135(5): 2718-2726. doi: 10.1121/1.4871357
    [16] HE Yuan-peng, CHENG Gong, HAN Jian, et al. Modeling noise radiation from concrete box girder bridges as an infinitely long periodic structure excited by a high-speed train[J]. Journal of Vibration and Acoustic, 2021, 143: 031015. doi: 10.1115/1.4050428
    [17] SONG Li-zhong, LI Xiao-dong, ZHENG Jing, et al. Vibro-acoustic analysis of a rail transit continuous rigid frame box girder bridge based on a hybrid WFE-2D BE method[J]. Applied Acoustics, 2020, 157: 107028. doi: 10.1016/j.apacoust.2019.107028
    [18] LU Zheng, LI Jun-zuo, LI Qi. Vibration analysis of coupled multilayer structures with discrete connections for noise prediction[J]. International Journal of Structural Stability and Dynamics, 2020, 20(4): 2050051. doi: 10.1142/S0219455420500510
    [19] LIU Cheng, CHEN Lei-lei, ZHAO Wen-chang, et al. Shape optimization of sound barrier using an isogeometric fast multipole boundary element method in two dimensions[J]. Engineering Analysis with Boundary Elements, 2017, 85: 142-157. doi: 10.1016/j.enganabound.2017.09.009
    [20] ZHAO Wen-chang, ZHENG Chang-jun, CHEN Hai-bo. Acoustic topology optimization of porous material distribution based on an adjoint variable FMBEM sensitivity analysis[J]. Engineering Analysis with Boundary Elements, 2019, 99: 60-75 doi: 10.1016/j.enganabound.2018.11.003
    [21] 刘林芽, 许代言. 快速多极边界元计算高架箱形梁结构噪声辐射特性[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(6): 1095-1099. doi: 10.3963/j.issn.2095-3844.2015.06.001

    LIU Lin-ya, XU Dai-yan. Fast multipole boundary element method to calculate elevated box beam structure noise radiation characteristics[J]. Journal of Wuhan University of Technology and Engineering (Transportation Science and Engineering), 2015, 39(6): 1095-1099. (in Chinese) doi: 10.3963/j.issn.2095-3844.2015.06.001
    [22] ZHAO Cai-you, WANG Ping. Minimizing noise from metro viaduct railway lines by means of elastic mats and fully closed noise barriers[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(6): 1828-1836. doi: 10.1177/0954409717752200
    [23] 伍向阳. 铁路全封闭声屏障降噪效果试验研究[J]. 铁道标准设计, 2019, 63(12): 177-181. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201912033.htm

    WU Xiang-yang. Experimental study on noise reduction effect of fully enclosed sound barrier on railway[J]. Railway Standard Design, 2019, 63(12): 177-181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201912033.htm
    [24] LI Qiu-tong, DUHAMEL D, LUO Yan-yun, et al. Analysing the acoustic performance of a nearly-enclosed noise barrier using scale model experiments and a 2.5-D BEM approach[J]. Applied Acoustics, 2020, 158: 107079. doi: 10.1016/j.apacoust.2019.107079
    [25] 吴小萍, 费广海, 廖晨彦. 高速铁路不同高度声屏障的降噪效果分析[J]. 中国铁道科学, 2015, 36(3): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201503020.htm

    WU Xiao-ping, FEI Guang-hai, LIAO Chen-yan. Analysis on noise reduction effect of sound barriers with different heights for high speed railway[J]. China Railway Science, 2015, 36(3): 127-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201503020.htm
    [26] 费广海, 吴小萍, 廖晨彦. 声屏障高度对高铁(客运专线)降噪效果的影响[J]. 中国环境科学, 2015, 35(8): 2539-2545. doi: 10.3969/j.issn.1000-6923.2015.08.036

    FEI Guang-hai, WU Xiao-ping, LIAO Chen-yan. The influence of sound barriers with different heights on the noise reduction effect of high-speed railway[J]. China Environmental Science, 2015, 35(8): 2539-2545. (in Chinese) doi: 10.3969/j.issn.1000-6923.2015.08.036
    [27] 张小安, 翟婉明, 石广田, 等. 城市轨道交通直壁式声屏障车致振动噪声研究[J]. 兰州交通大学学报, 2019, 38(1): 78-87. doi: 10.3969/j.issn.1001-4373.2019.01.013

    ZHANG Xiao-an, ZHAI Wan-ming, SHI Guang-tian, et al. Structure noise of straight-wall noise barrier in urban rail transit[J]. Journal of Lanzhou Jiaotong University, 2019, 38(1): 78-87. (in Chinese) doi: 10.3969/j.issn.1001-4373.2019.01.013
    [28] 张晓芸, 石广田, 王开云, 等. 高速铁路箱梁桥-声屏障结构振动噪声初探[J]. 兰州交通大学学报, 2020, 39(2): 76-84. doi: 10.3969/j.issn.1001-4373.2020.02.012

    ZHANG Xiao-yun, SHI Guang-tian, WANG Kai-yun, et al. Preliminary study on structure-borne noise of box girder bridge-sound barrier in high speed railway[J]. Journal of Lanzhou Jiaotong University, 2020, 39(2): 76-84. (in Chinese) doi: 10.3969/j.issn.1001-4373.2020.02.012
    [29] 王党雄, 李小珍, 张迅, 等. 轨道结构形式对箱梁中高频振动的影响研究[J]. 土木工程学报, 2017, 50(8): 68-77. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201708008.htm

    WANG Dang-xiong, LI Xiao-zhen, ZHANG Xun, et al. Study on the influences of different tracks on the medium- and high-frequency vibrations of a box girder[J]. China Civil Engineering Journal, 2017, 50(8): 68-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201708008.htm
    [30] LIANG Lin, LI Xiao-zhen, ZHENG Jing, et al. Structure-borne noise from long-span steel truss cable-stayed bridge under damping pad floating slab: experimental and numerical analysis[J]. Applied Acoustics, 2020, 157: 106988. doi: 10.1016/j.apacoust.2019.07.036
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  600
  • HTML全文浏览量:  224
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-02
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回