留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地震作用下轨道-桥梁系统损伤与轨道不平顺的对应关系

冯玉林 蒋丽忠 陈梦成 聂磊鑫 余建 吴凌旭

冯玉林, 蒋丽忠, 陈梦成, 聂磊鑫, 余建, 吴凌旭. 地震作用下轨道-桥梁系统损伤与轨道不平顺的对应关系[J]. 交通运输工程学报, 2021, 21(3): 203-214. doi: 10.19818/j.cnki.1671-1637.2021.03.013
引用本文: 冯玉林, 蒋丽忠, 陈梦成, 聂磊鑫, 余建, 吴凌旭. 地震作用下轨道-桥梁系统损伤与轨道不平顺的对应关系[J]. 交通运输工程学报, 2021, 21(3): 203-214. doi: 10.19818/j.cnki.1671-1637.2021.03.013
FENG Yu-lin, JIANG Li-zhong, CHEN Meng-cheng, NIE Lei-xin, YU Jian, WU ling-xu. Corresponding relationship between track-bridge system damage and track irregularity under seismic action[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 203-214. doi: 10.19818/j.cnki.1671-1637.2021.03.013
Citation: FENG Yu-lin, JIANG Li-zhong, CHEN Meng-cheng, NIE Lei-xin, YU Jian, WU ling-xu. Corresponding relationship between track-bridge system damage and track irregularity under seismic action[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 203-214. doi: 10.19818/j.cnki.1671-1637.2021.03.013

地震作用下轨道-桥梁系统损伤与轨道不平顺的对应关系

doi: 10.19818/j.cnki.1671-1637.2021.03.013
基金项目: 

国家自然科学基金项目 U1934207

国家自然科学基金项目 51778630

江西省教育厅科研项目 GJJ200657

详细信息
    作者简介:

    冯玉林(1990-),男,吉林柳河人,华东交通大学讲师,工学博士,从事高速铁路映射与行车安全研究

    通讯作者:

    蒋丽忠(1971-),男,湖南衡山人,中南大学教授,工学博士

  • 中图分类号: U213.24

Corresponding relationship between track-bridge system damage and track irregularity under seismic action

Funds: 

National Natural Science Foundation of China U1934207

National Natural Science Foundation of China 51778630

Scientific Research Project of Jiangxi Provincial Education Department GJJ200657

More Information
  • 摘要: 针对地震作用下高速铁路轨道-桥梁系统损伤与轨道不平顺的对应关系不明确问题, 运用能量变分原理,推导了多层叠合结构层间变形协调关系表达式,将该表达式应用在高速铁路单元式和纵连式无砟轨道-桥梁系统中,按系统轨道形式与梁跨结点进行划段装配,提出了考虑路基与简支引桥影响的高速铁路基础结构变形与轨道不平顺的对应关系;采用现场实测、数值仿真模型与列车-轨道-连续梁桥-路基耦合动力学理论对对应关系进行了验证,并统计了地震作用下轨道-桥梁系统的损伤规律;基于提出的对应关系求得了考虑地震损伤的轨道不平顺样本,并采用数值仿真模型对其进行验证。研究结果表明:提出的对应关系与数值仿真模型求得的桥梁变形引起的轨道不平顺及现场实测值吻合较好,最大误差不超过5%,且轨道不平顺作用下车-桥动力学性能指标变化也基本一致,验证了本文提出的对应关系的正确性和有效性;地震作用下轨道-桥梁系统层间各部件的损伤较小,而支座的损伤较大,系统部件最大损伤位置在主梁梁缝处,但也仅约为支座损伤的1%;在不同水准地震作用下,采用提出的对应关系和数值仿真模型计算的地震损伤与轨道不平顺的对应曲线均吻合良好,说明提出的对应关系可用于计算与预测地震作用下高速铁路轨道-桥梁系统的轨道平顺性。

     

  • 图  1  多层叠合结构模型

    Figure  1.  Multilayer composite structures model

    图  2  高速铁路单元式无砟轨道-桥梁系统

    Figure  2.  Unit-type ballastless track-bridge system of high-speed railway

    图  3  高速铁路纵连式无砟轨道-桥梁系统

    Figure  3.  Longitudinal connected ballastless track-bridge system of high-speed railway

    图  4  求解流程

    Figure  4.  Solution flow

    图  5  梁端转角下轨道不平顺

    Figure  5.  Track irregularities under beam ends rotation

    图  6  现场实测440#~443#桥墩沉降引起的轨道不平顺

    Figure  6.  Track irregularities caused by field measurement settlement of 440#~443# pier

    图  7  轨道不平顺作用下列车-桥梁动力学性能指标

    Figure  7.  Train-bridge dynamic performance indexes under track irregularities

    图  8  自由振动法求解系统残余变形

    Figure  8.  Solving residual deformation of system using free vibration method

    图  9  系统部件地震损伤发展程度

    Figure  9.  Seismic damage development degrees of system components

    图  10  NM和CR求得的轨道横向不平顺对比

    Figure  10.  Comparison of transverse irregularities obtained by NM and CR

    表  1  NM和CR计算的桥墩沉降下的轨道不平顺

    Table  1.   Track irregularities under pier settlement calculated by NM and CR

    变形模式 幅值/mm 轨道不平顺最大值/mm 误差/%
    NM计算结果 CR计算结果
    边墩沉降 6 5.895 5.899 0.068
    12 11.791 11.799 0.068
    18 17.686 17.698 0.068
    多墩沉降 6 6.011 6.011 0.002
    12 12.022 12.023 0.002
    18 18.033 18.034 0.002
    下载: 导出CSV
  • [1] 曾永平, 董俊, 陈克坚, 等. 九度地震区高铁简支梁减隔震体系适应性分析[J]. 铁道工程学报, 2020, 37(2): 46-52. doi: 10.3969/j.issn.1006-2106.2020.02.010

    ZENG Yong-ping, DONG Jun, CHEN Ke-jian, et al. Adaptability analysis of the seismic isolation system for high-speed railway simply supported beam bridge in nine-degree seismic regions[J]. Journal of Railway Engineering Society, 2020, 37(2): 46-52. (in Chinese) doi: 10.3969/j.issn.1006-2106.2020.02.010
    [2] 蒋丽忠, 周旺保, 魏标, 等. 地震作用下高速铁路车-轨-桥系统安全研究进展[J]. 土木工程学报, 2020, 53(9): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202009001.htm

    JIANG Li-zhong, ZHOU Wang-bao, WEI Biao, et al. Research progress of train-track-bridge system safety of high-speed railway under earthquake action[J]. China Civil Engineering Journal, 2020, 53(9): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202009001.htm
    [3] FENG Yu-lin, JIANG Li-zhong, ZHOU Wang-bao, et al. An analytical solution to the mapping relationship between bridge structures vertical deformation and rail deformation of high-speed railway[J]. Steel and Composite Structures, 2019, 33(2): 209-224. http://www.researchgate.net/publication/336868324_An_analytical_solution_to_the_mapping_relationship_between_bridge_structures_vertical_deformation_and_rail_deformation_of_high-speed_railway
    [4] 陈兆玮, 孙宇, 翟婉明. 高速铁路桥墩沉降与钢轨变形的映射关系(Ⅰ): 单元板式无砟轨道系统[J]. 中国科学: 技术科学, 2014, 44(7): 770-777. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407015.htm

    CHEN Zhao-wei, SUN Yu, ZHAI Wan-ming. Mapping relationship between pier settlement and rail deformation of high-speed railways—Part(Ⅰ): the unit slab track system[J]. Scientia Sinica: Technologica, 2014, 44(7): 770-777. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407015.htm
    [5] 陈兆玮, 孙宇, 翟婉明. 高速铁路桥墩沉降与钢轨变形的映射关系(Ⅱ): 纵连板式无砟轨道系统[J]. 中国科学: 技术科学, 2014, 44(7): 778-785. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407016.htm

    CHEN Zhao-wei, SUN Yu, ZHAI Wan-ming. Mapping relationship between pier settlement and rail deformation of high-speed railways—Part (Ⅱ): the longitudinal connected ballastless track system[J]. Scientia Sinica: Technologica, 2014, 44(7): 778-785. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407016.htm
    [6] 蔡小培, 刘薇, 王璞, 等. 地面沉降对路基上双块式无砟轨道平顺性的影响[J]. 工程力学, 2014, 31(9): 160-165. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201409023.htm

    CAI Xiao-pei, LIU Wei, WANG Pu, et al. Effect of land subsidence on regularity of double-block ballastless track[J]. Engineering Mechanics, 2014, 31(9): 160-165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201409023.htm
    [7] 吴斌, 林志华, 曾志平, 等. 日温下高铁桥墩位移与钢轨变形的映射关系[J]. 铁道工程学报, 2017, 34(11): 51-56. doi: 10.3969/j.issn.1006-2106.2017.11.011

    WU Bin, LIN Zhi-hua, ZENG Zhi-ping, et al. Mapping relationship between the bridge pier's displacement and rail deformation of high-speed railways under the influence of sunshine temperature[J]. Journal of Railway Engineering Society, 2017, 34(11): 51-56. (in Chinese) doi: 10.3969/j.issn.1006-2106.2017.11.011
    [8] GOU Hong-ye, RAN Zhi-wen, YANG Long-cheng, et al. Mapping vertical bridge deformations to track geometry for high-speed railway[J]. Steel and Composite Structures, 2019, 32(4): 467-478. http://www.researchgate.net/publication/334762113_Mapping_Vertical_Bridge_Deformations_to_Track_Geometry_for_High-speed_Railway
    [9] 勾红叶, 杨龙城, 蒲黔辉, 等. 高速铁路桥梁横向变形与单元板式无砟轨道钢轨变形的映射关系[J]. 中国铁道科学, 2019, 40(5): 42-52. doi: 10.3969/j.issn.1001-4632.2019.05.07

    GOU Hong-ye, YANG Long-cheng, PU Qian-hui, et al. Mapping relationship between lateral deformation of high speed railway bridge and rail deformation of unit slab ballastless track[J]. China Railway Science, 2019, 40(5): 42-52. (in Chinese). doi: 10.3969/j.issn.1001-4632.2019.05.07
    [10] 魏亚辉, 徐鹤寿, 牛斌. 无砟轨道桥梁梁端变形对扣件影响的模型试验研究和数值分析[J]. 铁道建筑, 2011(3): 99-102. doi: 10.3969/j.issn.1003-1995.2011.03.032

    WEI Ya-hui, XU He-shou, NIU Bin. Model test and numerical analysis of the influence of beam end deformation on fasteners of ballastless track bridges[J]. Railway Engineering, 2011(3): 99-102. (in Chinese) doi: 10.3969/j.issn.1003-1995.2011.03.032
    [11] 佐藤吉彦. 新轨道力学[M]. 北京: 中国铁道出版社, 2001.

    SATO J Y. New Track Mechanics[M]. Beijing: China Railway Publishing House Co., Ltd., 2001. (in Chinese)
    [12] SANGUINO M C, REQUEJO P G, BAUR D L. New considerations on track-structure interaction in railway bridges[C]//IABMAS. 5th International Conference on Bridge Maintenance, Safety and Management. London: Taylor and Francis Inc., 2010: 2092-2097.
    [13] JIANG Li-zhong, KANG Xin, LI Chang-qing, et al. Earthquake response of continuous girder bridge for high-speed railway: a shaking table test study[J]. Engineering Structures, 2019, 180: 249-263. doi: 10.1016/j.engstruct.2018.11.047
    [14] KANG Xin, JIANG Li-zhong, BAI Yu, et al. Seismic damage evaluation of high-speed railway bridge components under different intensities of earthquake excitations[J]. Engineering Structures, 2017, 152: 116-128. doi: 10.1016/j.engstruct.2017.08.057
    [15] 国巍, 王阳, 葛苍瑜, 等. 近断层地震动下高速铁路多跨简支梁桥震致破坏特征[J]. 振动与冲击, 2020, 39(17): 210-218. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202017029.htm

    GUO Wei, WANG Yang, GE Cang-yu, et al. Seismic failure features of multi-span simply supported girder bridges of high-speed railway under near-fault earthquake[J]. Journal of Vibration and Shock, 2020, 39(17): 210-218. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202017029.htm
    [16] 江辉, 王敏, 曾聪, 等. 分级地震下跨断层高铁简支梁桥行车安全与抗震设计优化研究[J]. 工程力学, 2020, 37(10): 70-84. doi: 10.6052/j.issn.1000-4750.2019.10.0599

    JIANG Hui, WANG Min, ZENG Cong, et al. Running safety and seismic design optimization of fault-crossing simply-supported girder bridge of high-speed railway under earthquakes with different intensities[J]. Engineering Mechanics, 2020, 37(10): 70-84. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0599
    [17] 张永亮, 杨世杰, 陈兴冲. 基于线桥一体化模型的高速铁路桥梁地震反应分析[J]. 桥梁建设, 2016, 46(4): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201604005.htm

    ZHANG Yong-liang, YANG Shi-jie, CHEN Xing-chong. Analysis of seismic response of high-speed railway bridge based on integrated track and bridge model[J]. Bridge Construction, 2016, 46(4): 23-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201604005.htm
    [18] 张永亮, 于伟栋, 马华军, 等. 板式无砟轨道系统对不同抗震体系铁路桥梁纵向地震响应的影响[J]. 中南大学学报(自然科学版), 2017, 48(10): 2738-2744. doi: 10.11817/j.issn.1672-7207.2017.10.025

    ZHANG Yong-liang, YU Wei-dong, MA Hua-jun, et al. Influence of slab ballastless track on longitudinal seismic response of railway bridge with different seismic systems[J]. Journal of Central South University (Science and Technology), 2017, 48(10): 2738-2744. (in Chinese). doi: 10.11817/j.issn.1672-7207.2017.10.025
    [19] FITZWILLIAM D. Track Structure Interactions for the Taiwan High Speed Rail Project[C]//IABSE. Symposium on Structures for High-Speed Railway Transportation. Antwerp: IABSE, 2003: 88-89.
    [20] TECCHIO G, DONÀ M, DA PORTO F. Seismic fragility curves of as-built single-span masonry arch bridges[J]. Bulletin of Earthquake Engineering, 2016, 14: 3099-3124. doi: 10.1007/s10518-016-9931-6
    [21] PARK J, TOWASHIRAPORN P. Rapid seismic damage assessment of railway bridges using the response-surface statistical model[J]. Structural Safety, 2014, 47: 1-12. doi: 10.1016/j.strusafe.2013.10.001
    [22] PARK J, CHOI E. Fragility analysis of track-on steel-plate-girder railway bridges in Korea[J]. Engineering Structures, 2011, 33: 696-705. doi: 10.1016/j.engstruct.2010.09.028
    [23] WEI Biao, YANG Tian-han, JIANG Li-zhong, et al. Effects of uncertain characteristic periods of ground motions on seismic vulnerabilities of a continuous track-bridge system of high-speed railway[J]. Bulletin of Earthquake Engineering, 2018, 16(9): 3739-3769. doi: 10.1007/s10518-018-0326-8
    [24] 孙治国, 赵泰儀, 王东升, 等. 基于RSC体系的双层桥梁排架墩地震损伤控制设计[J]. 中国公路学报, 2020, 33(3): 97-106. doi: 10.3969/j.issn.1001-7372.2020.03.009

    SUN Zhi-guo, ZHAO Tai-yi, WANG Dong-sheng, et al. Seismic damage control design for double-deck bridge bents based on rocking self-centering system[J]. China Journal of Highway and Transport, 2020, 33(3): 97-106. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.03.009
    [25] TOYOOKA A, IKEDA M, YANAGAWA H, et al. Effects of track structure on seismic behavior of isolation system bridges[J]. Quarterly Report of RTRI, 2005, 46(4): 238-243. doi: 10.2219/rtriqr.46.238
    [26] 中国铁道科学研究院. 京津城际铁路CRTS Ⅱ型板式无砟轨道设计原理与方法总结[R]. 北京: 中国铁道科学研究院, 2008.

    China Academy of Railway Sciences. Summary of design principle and method of CRTS Ⅱ slab ballastless track for Beijing-Tianjin Intercity Railway[R]. Beijing: China Academy of Railway Sciences, 2008. (in Chinese).
    [27] 龙昊. 高速铁路桥梁附加变形对轨道不平顺的映射影响机理研究[D]. 成都: 西南交通大学, 2019.

    LONG Hao. Mechanism of mapping relationship between additional bridge deformation and track irregularity of high-speed railway[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
    [28] 杨荣山, 汪杰, 姜恒昌, 等. CRTSⅡ型板式轨道底座板后浇带脱空对轨道结构与行车的影响[J]. 交通运输工程学报, 2019, 19(3): 71-78. doi: 10.3969/j.issn.1671-1637.2019.03.008

    YANG Rong-shan, WANG Jie, JIANG Heng-chang, et al. Effects of post-pouring belt void of base slab on track structure and train operation of CRTS Ⅱ slab track[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 71-78. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.03.008
    [29] 冯玉林, 蒋丽忠, 周旺保, 等. 桥上CRTS Ⅱ型板式无砟轨道层间关键构件的地震响应规律及参数影响分析[J]. 铁道标准设计, 2020, 64(10): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202010007.htm

    FENG Yu-lin, JIANG Li-zhong, ZHOU Wang-bao, et al. Seismic response and damage law of CRTS Ⅱ slab ballastless track key components between layers on bridge[J]. Railway Standard Design, 2020, 64(10): 30-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202010007.htm
    [30] 江辉, 王志, 白晓宇, 等. 近远场强震下深水桥梁群桩基础的非线性响应及损伤特性[J]. 振动与冲击, 2017, 36(24): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201724003.htm

    JIANG Hui, WANG Zhi, BAI Xiao-yu, et al. Nonlinear responses and damage characteristics for group-piles foundation of a deep-water bridge under strong near-fault and far-field earthquakes[J]. Journal of Vibration and Shock, 2017, 36(24): 13-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201724003.htm
    [31] 张勤, 贡金鑫, 周继凯. 基于概率的单自由度体系震后残余变形计算[J]. 建筑结构学报, 2017, 38(8): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201708008.htm

    ZHANG Qin, GONG Jin-xin, ZHOU Ji-kai. Seismic residual deformation analysis of single degree of freedom system based on probability[J]. Journal of Building Structures, 2017, 38(8): 74-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201708008.htm
    [32] 谢铠泽, 赵维刚, 蔡小培, 等. 悬索桥初始内力与几何非线性对梁轨相互作用的影响[J]. 交通运输工程学报, 2020, 20(1): 82-91. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001009.htm

    XIE Kai-ze, ZHAO Wei-gang, CAI Xiao-pei, et al. Impacts of initial internal force and geometric nonlinearity of suspension bridge on bridge-rail interaction[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 82-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001009.htm
    [33] 闫斌, 黄杰, 刘施, 等. 复杂地形条件下桥上CRTSⅡ型轨道系统地震响应[J]. 交通运输工程学报, 2018, 18(1): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201801006.htm

    YAN Bin, HUANG Jie, LIU Shi, et al. Seismic responses of CRTS Ⅱ track system on bridge under complex geography conditions[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 43-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201801006.htm
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  498
  • HTML全文浏览量:  126
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-25
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回