留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重载轨道曲线几何参数对轮轨耦合动力特性的影响

杨春雷 黄运华 丁军君

杨春雷, 黄运华, 丁军君. 重载轨道曲线几何参数对轮轨耦合动力特性的影响[J]. 交通运输工程学报, 2021, 21(3): 215-227. doi: 10.19818/j.cnki.1671-1637.2021.03.014
引用本文: 杨春雷, 黄运华, 丁军君. 重载轨道曲线几何参数对轮轨耦合动力特性的影响[J]. 交通运输工程学报, 2021, 21(3): 215-227. doi: 10.19818/j.cnki.1671-1637.2021.03.014
YANG Chun-lei, HUANG Yun-hua, DING Jun-jun. Influences of curve geometric parameters of heavy haul track on wheel/rail coupling dynamic characteristics[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 215-227. doi: 10.19818/j.cnki.1671-1637.2021.03.014
Citation: YANG Chun-lei, HUANG Yun-hua, DING Jun-jun. Influences of curve geometric parameters of heavy haul track on wheel/rail coupling dynamic characteristics[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 215-227. doi: 10.19818/j.cnki.1671-1637.2021.03.014

重载轨道曲线几何参数对轮轨耦合动力特性的影响

doi: 10.19818/j.cnki.1671-1637.2021.03.014
基金项目: 

国家重点研发计划项目 2016YFB1200501

国家自然科学基金项目 51965016

详细信息
    作者简介:

    杨春雷(1973-),男,湖北鹤峰人,湖南民族大学教授级高级工程师,工学博士,从事铁路轮轨关系及机车车辆系统动力学研究

  • 中图分类号: U272.2

Influences of curve geometric parameters of heavy haul track on wheel/rail coupling dynamic characteristics

Funds: 

National Key Research and Development Program of China 2016YFB1200501

National Natural Science Foundation of China 51965016

More Information
  • 摘要: 基于车辆-轨道耦合动力学理论,根据中国最近研制的27 t轴重侧架交叉支撑转向架及C80E型通用敞车的实际结构和重载铁路曲线轨道结构特点及其技术规范要求,建立了曲线轨道的重载铁路货车-轨道耦合动力学模型;基于新型快速数值积分方法、Hertz非线性弹性接触理论和Shen-Hedrick-Elkins非线性轮轨蠕滑理论,应用计算机仿真计算了不同工况下重载货车曲线通过时的轮轨耦合动力特性,分析了曲线半径、缓和曲线长度和外轨超高等曲线几何参数对重载货车轮轨动力作用的影响。分析结果表明:曲线半径在400~800 m范围内变化时对轮轨动力影响极为明显,而当曲线半径大于800 m后其影响逐渐弱化,重载铁路曲线半径一般不应小于800 m;增加缓和曲线长度能在一定程度上降低重载货车轮轨动力作用,但其作用效果存在长度拐点,拐点前效果明显,拐点后影响甚微,且曲线半径和运行速度都会影响拐点的具体位置,建议根据拐点位置来确定不同曲线半径线路的最小缓和曲线长度;过大的欠超高或过超高均会加剧重载货车曲线通过时的轮轨动力作用,但在欠超高为-20~0 mm时重载货车的综合轮轨动力响应相对较小,即保持货车以适当的欠超高(-20~0 mm)通过曲线有利于降低轮轨动力和磨耗,这与中国铁路工程运输实际设置的欠超高取值范围一致。

     

  • 图  1  重载货车-轨道耦合动力学模型

    Figure  1.  Heavy haul vehicle-track coupling dynamics model

    图  2  无轨道不平顺激励时曲线半径对轮轨动力作用的影响

    Figure  2.  Effects of curve radius on wheel/rail dynamic interactions without track irregularity excitation

    图  3  有轨道不平顺激励时曲线半径对轮轨动力作用的影响

    Figure  3.  Effects of curve radius on wheel/rail dynamic interactions with track irregularity excitation

    图  4  无轨道不平顺激励时缓和曲线长度对轮轨动力作用的影响

    Figure  4.  Effects of transition curve length on wheel/rail dynamic interactions without track irregularity excitation

    图  5  有轨道不平顺激励时缓和曲线长度对轮轨动力作用的影响

    Figure  5.  Effects of transition curve length on wheel/rail dynamic interactions with track irregularity excitation

    图  6  无轨道不平顺激励时外轨超高对轮轨动力作用的影响

    Figure  6.  Effects of superelevation of outer rail on wheel/rail dynamic interactions without track irregularity excitation

    图  7  有轨道不平顺激励时外轨超高对轮轨动力作用的影响

    Figure  7.  Effects of superelevation of outer rail on wheel/rail dynamic interactions with track irregularity excitation

    表  1  曲线半径计算工况

    Table  1.   Calculation conditions for curve radius

    曲线半径/m 车辆速度/(km·h-1) 外轨超高 缓和曲线长度/m 圆曲线长度/m 线路激励
    400~1 600 80 按式(1)计算元整求得 50 30 考虑无轨道不平顺激励和中国三大重载提速干线谱激励
    100 100 40
    下载: 导出CSV

    表  2  缓和曲线长度计算工况

    Table  2.   Calculation conditions for transition curve length

    缓和曲线长度/m 曲线半径/m 车辆速度/ (km·h-1) 圆曲线长度/m 外轨超高/mm 线路激励
    20~120 600 80 30 125 考虑无轨道不平顺激励和中国三大重载提速干线谱激励
    1 000 80 30 75
    1 400 100 40 85
    下载: 导出CSV

    表  3  无轨道不平顺激励时轮轨动力指标对应的缓和曲线长度拐点值

    Table  3.   Inflexions of transition curve length to wheel/rail dynamic indexes without track irregularity excitation

    轮轨指标 轮轨横向力 轮轴横向力 轮轨垂向力 轮轨接触应力 轮轨磨耗功 轮轨磨耗指数 综合各指标
    速度/(km·h-1) 80 100 80 100 80 100 80 100 80 100 80 100 80 100
    曲线半径/m 600 30 100 30 100 50 100 50 100 30 100 30 100 50 100
    1 000 70 30 60 30 40 30 40 30 60
    1 400 40 40 20 40
    下载: 导出CSV

    表  4  外轨超高计算工况

    Table  4.   Calculation conditions for superelevation of outer rail

    外轨超高/ mm 曲线半径/ m 车辆速度/ (km·h-1) 圆曲线长度/ m 缓和曲线长度/ m 线路激励
    0~ 150 800 80 30 50 考虑无轨道不平顺激励和中国三大重载提速干线谱激励
    1 400 100 40 40
    下载: 导出CSV
  • [1] 翟婉明, 赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001

    ZHAI Wan-ming, ZHAO Chun-fa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.02.001
    [2] 胡海滨, 吕可维, 邵文东, 等. 大秦铁路货车车轮磨耗问题的调查与研究[J]. 铁道学报, 2010, 31(1): 30-37. doi: 10.3969/j.issn.1001-8360.2010.01.006

    HU Hai-bin, LYU Ke-wei, SHAO Wen-dong, et al. Research on wheel wear of freight cars on Datong-Qinhuangdao Railway Line[J]. Journal of the China Railway Society, 2010, 31(1): 30-37. (in Chinese) doi: 10.3969/j.issn.1001-8360.2010.01.006
    [3] 陈朝阳, 张银花, 刘丰收, 等. 朔黄铁路曲线下股热处理钢轨剥离损伤成因分析[J]. 中国铁道科学, 2008, 29(4): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200804005.htm

    CHEN Zhao-yang, ZHANG Yin-hua, LIU Feng-shou, et al. Analysis on the formation cause of spalling and damage of the heat-treated low rail on Shuo-huang Railway curve[J]. China Railway Science, 2008, 29(4): 28-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200804005.htm
    [4] WANG Kai-yun, HUANG Chao, ZHAI Wan-ming, et al. Progress on wheel-rail dynamic performance of railway curve negotiation[J]. Journal of Traffic and Transportation Engineering (English Edition), 2014, 1(3): 209-220. doi: 10.1016/S2095-7564(15)30104-5
    [5] 翟婉明. 车辆-轨道耦合动力学研究的新进展[J]. 中国铁道科学, 2002, 23(2): 1-14. doi: 10.3321/j.issn:1001-4632.2002.02.001

    ZHAI Wan-ming. New advance in vehicle-track coupling dynamics[J]. China Railway Science, 2002, 23(2): 1-14. (in Chinese) doi: 10.3321/j.issn:1001-4632.2002.02.001
    [6] GRASSIE S L, ELKINS J A. Tractive effort, curving and surface damage of rails: part 1. Forces exerted on the rails[J]. Wear, 2005, 258(7/8): 1235-1244. http://www.sciencedirect.com/science/article/pii/S0043164804002911
    [7] SADEGHI J, AKBARI B. Field investigation on effects of railway track geometric parameters on rail wear[J]. Journal of Zhejiang University—Science A, 2006, 7(11): 1846-1855. doi: 10.1631/jzus.2006.A1846
    [8] OYARZABAL O, GÓMEZ J, SANTAMARÍA J, et al. Dynamic optimization of track components to minimize rail corrugation[J]. Journal of Sound and Vibration, 2009, 319: 904-917. doi: 10.1016/j.jsv.2008.06.020
    [9] ZBOIŃSKI K, WOŹNICA P. Optimization of the railway transition curves' shape with use of vehicle-track dynamical model[J]. The Archives of Transport, 2010, 22(3): 387-406.
    [10] ELIOU N, KALIABETSOS G. A new, simple and accurate transition curve type, for use in road and railway alignment design[J]. European Transport Research Review, 2014, 6: 171-179. doi: 10.1007/s12544-013-0119-8
    [11] ZBOIŃSKI K, GOLOFIT-STAWINSKA M. Investigation into nonlinear phenomena for various railway vehicles in transition curves at velocities close to critical one[J]. Nonlinear Dynamics, 2019, 98: 1555-1601. doi: 10.1007/s11071-019-05041-2
    [12] REAL J I, GÓMEZ L, MONTALBÁN L, et al. Study of the influence of geometrical and mechanical parameters on ballasted railway tracks design[J]. Journal of Mechanical Science and Technology, 2012, 26: 2837-2844. doi: 10.1007/s12206-012-0734-7
    [13] 赵国堂, 曾树谷. 曲线半径与过、欠超高对钢轨侧磨的影响[J]. 中国铁道科学, 1995, 16(3): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK503.010.htm

    ZHAO Guo-tang, ZENG Shu-gu. Effect of curve radius and off-balance superelevation on side wear of high rail on curved track[J]. China Railway Science, 1995, 16(3): 90-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK503.010.htm
    [14] 曾树谷. 关于曲线允许欠超高标准的探讨[J]. 铁道建筑, 1997(3): 6-8, 30. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ199703001.htm

    ZENG Shu-gu. Discussion on standard of allowable super elevation deficiency of curves[J]. Railway Engineering, 1997(3): 6-8, 30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ199703001.htm
    [15] 陈旭. 曲线超高在铁路工程设计中的关键影响[J]. 铁道工程学报, 2011(11): 6-12. doi: 10.3969/j.issn.1006-2106.2011.11.002

    CHEN Xu. Key influences of curve super-elevation on design of railway engineering[J]. Journal of Railway Engineering Society, 2011(11): 6-12. (in Chinese) doi: 10.3969/j.issn.1006-2106.2011.11.002
    [16] 赵德宽, 黄鹏. 重载铁路曲线超高对外轨侧磨速率的影响[J]. 铁道建筑, 2018, 58(8): 105-109. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201808026.htm

    ZHAO De-kuan, HUANG Peng. Influence of curve superelevation of heavy haul railway on side wear rate of outer rail[J]. Railway Engineering, 2018, 58(8): 105-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201808026.htm
    [17] 高亮, 王璞, 蔡小培, 等. 基于多车精细建模的曲线地段重载列车-轨道系统动力性能研究[J]. 振动与冲击, 2014, 35(22): 1-6, 12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201422001.htm

    GAO Liang, WANG Pu, CAI Xiao-pei, et al. Dynamic characteristics of train-track system in curved track sections based on elaborate multi-vehicle model[J]. Journal of Vibration and Shock, 2014, 35(22): 1-6, 12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201422001.htm
    [18] 高亮, 王璞, 蔡小培, 等. 客货混行条件下神朔重载铁路小半径曲线超高调整方案研究[J]. 振动与冲击, 2016, 35(18): 222-228. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201618036.htm

    GAO Liang, WANG Pu, CAI Xiao-pei, et al. Superelevation modification for the small-radius curve of Shen-shuo Railway under mixed traffic of passenger and freight trains[J]. Journal of Vibration and Shock, 2016, 35(18): 222-228. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201618036.htm
    [19] JIN Xue-song, XIAO Xin-biao, WEN Ze-feng, et al. An investigation into the effect of train curving on wear and contact stresses of wheel and rail[J]. Tribology International, 2009, 42: 475-490. doi: 10.1016/j.triboint.2008.08.004
    [20] 杨新文, 姚一鸣, 周顺华, 等. 基于修正的轮轨非Hertz接触的重载铁路曲线超高对钢轨磨耗的影响分析[J]. 机械工程学报, 2018, 54(4): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804004.htm

    YANG Xin-wen, YAO Yi-ming, ZHOU Shun-hua, et al. Influence of curve superelevation of heavy haul railway on rail wear based on revised wheel/rail non-Hertz contact[J]. Journal of Mechanical Engineering, 2018, 54(4): 22-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804004.htm
    [21] 张建全, 黄运华, 李芾. 缓和曲线线型对铁道车辆动力学性能的影响[J]. 交通运输工程学报, 2010, 10(4): 39-44. doi: 10.3969/j.issn.1671-1637.2010.04.007

    ZHANG Jian-quan, HUANG Yun-hua, LI Fu. Influence of transition curves on dynamics performance of railway vehicle[J]. Journal of Traffic and Transportation Engineering, 2010, 10(4): 39-44. (in Chinese) doi: 10.3969/j.issn.1671-1637.2010.04.007
    [22] 周素霞, 薛蕊. 缓和曲线线型对地铁车辆动力学参数的影响[J]. 北京交通大学学报, 2015, 39(3): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201503006.htm

    ZHOU Su-xia, XUE Rui. Influence of transition curves act on subway wheel-rail wear[J]. Journal of Beijing Jiaotong University, 2015, 39(3): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201503006.htm
    [23] 黄乾兴, 石广田, 张小安, 等. 缓和曲线线型对双层轨道-车辆系统的影响分析[J]. 兰州交通大学学报, 2017, 36(4): 22-26. doi: 10.3969/j.issn.1001-4373.2017.04.004

    HUANG Qian-xing, SHI Guang-tian, ZHANG Xiao-an, et al. Influence of transition curve line on double track-vehicle system[J]. Journal of Lanzhou Jiaotong University, 2017, 36(4): 22-26. (in Chinese) doi: 10.3969/j.issn.1001-4373.2017.04.004
    [24] 练松良, 刘加华, 李新国, 等. 客运专线缓和曲线参数合理性的试验验证[J]. 铁道学报, 2006, 28(6): 88-92. doi: 10.3321/j.issn:1001-8360.2006.06.017

    LIAN Song-liang, LIU Jia-hua, LI Xin-guo, et al. Test verification of rationality of transition curve parameters of dedicated passenger traffic railway lines[J]. Journal of the China Railway Society, 2006, 28(6): 88-92. (in Chinese) doi: 10.3321/j.issn:1001-8360.2006.06.017
    [25] 冯威. 客运专线超高对曲线半径及缓和曲线长度的影响[J]. 铁道工程学报, 2009(6): 6-8, 20. doi: 10.3969/j.issn.1006-2106.2009.06.002

    FENG Wei. Influence of track superelevation on curve radius and transition curve length on passenger dedicated line[J]. Journal of Railway Engineering Society, 2009(6): 6-8, 20. (in Chinese) doi: 10.3969/j.issn.1006-2106.2009.06.002
    [26] 刘鹏飞, 翟婉明, 王开云, 等. 机车车辆通过缓和曲线时悬挂系统及轮重的动态特性[J]. 中国铁道科学, 2013, 34(1): 67-73. doi: 10.3969/j.issn.1001-4632.2013.01.10

    LIU Peng-fei, ZHAI Wan-ming, WANG Kai-yun, et al. The dynamic characteristics of suspension system and wheel load for rolling stock passing through transition curve[J]. China Railway Science, 2013, 34(1): 67-73. (in Chinese) doi: 10.3969/j.issn.1001-4632.2013.01.10
    [27] 马卫华, 王自力. 缓和曲线长度对2C0轴机车曲线通过性能的影响[J]. 内燃机车, 2005(7): 16-18, 38. doi: 10.3969/j.issn.1003-1820.2005.07.004

    MA Wei-hua, WANG Zi-li. Influence of the transition track length on curve passing performance of a locomotive with 2C0 bogies[J]. Railway Locomotive and Motor Car, 2005(7): 16-18, 38. (in Chinese) doi: 10.3969/j.issn.1003-1820.2005.07.004
    [28] 林雨, 杨轸, 潘晓东. 缓和曲线长度对车辆行驶轨迹的影响[J]. 西南交通大学学报, 2011, 46(2): 200-204. doi: 10.3969/j.issn.0258-2724.2011.02.004

    LIN Yu, YANG Zhen, PAN Xiao-dong. Effect of spiral transition curve length on vehicle path[J]. Journal of Southwest Jiaotong University, 2011, 46(2): 200-204. (in Chinese) doi: 10.3969/j.issn.0258-2724.2011.02.004
    [29] 宋晓文, 马卫华, 罗世辉. 缓和曲线长度对车辆曲线通过性能的影响[J]. 电力机车与城轨车辆, 2007, 30(4): 5-8. doi: 10.3969/j.issn.1672-1187.2007.04.002

    SONG Xiao-wen, MA Wei-hua, LUO Shi-hui. Influence of transition track length to the curve passing performance of railway vehicles[J]. Electric Locomotives and Mass Transit Vehicles, 2007, 30(4): 5-8. (in Chinese) doi: 10.3969/j.issn.1672-1187.2007.04.002
    [30] 王彩芸, 王文健, 郭俊, 等. 曲线半径对钢轨磨损影响的数值计算与试验分析[J]. 摩擦学学报, 2010, 30(6): 584-588. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201006012.htm

    WANG Cai-yun, WANG Wen-jian, GUO Jun, et al. Numerical and experiment analysis of the effect of curve radius on rail wear and rail failure[J]. Tribology, 2010, 30(6): 584-588. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201006012.htm
    [31] 陈峰, 张金雷, 王子甲. 铁路小半径曲线外轨侧磨影响因素分析[J]. 铁道科学与工程学报, 2018, 15(7): 1678-1684. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201807007.htm

    CHEN Feng, ZHANG Jin-lei, WANG Zi-jia. Analysis of influencing factors on side wear of small radius curve[J]. Journal of Railway Science and Engineering, 2018, 15(7): 1678-1684. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201807007.htm
    [32] 孙海富. 重载铁路最小曲线半径标准研究[J]. 铁道工程学报, 2016(1): 36-41. doi: 10.3969/j.issn.1006-2106.2016.01.008

    SUN Hai-fu. Study on the minimum curve radius of heavy haul railway[J]. Journal of Railway Engineering Society, 2016(1): 36-41. (in Chinese) doi: 10.3969/j.issn.1006-2106.2016.01.008
    [33] 曾勇, 许佑顶, 易思蓉, 等. 重载铁路最小曲线半径动力学分析[J]. 铁道工程学报, 2016(1): 43-45, 96. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201601009.htm

    ZENG Yong, XU You-ding, YI Si-rong, et al. Dynamic analysis of minimum curve radius on heavy haul railway[J]. Journal of Railway Engineering Society, 2016(1): 43-45, 96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201601009.htm
    [34] 王志军. 重载铁路小半径曲线钢轨磨耗规律及减磨措施[J]. 山西建筑, 2016, 42(5): 162-164. doi: 10.3969/j.issn.1009-6825.2016.05.087

    WANG Zhi-jun. Small radius curve rail abrasion law and abrasion reducing measures of heavy-load railway[J]. Shanxi Architecture, 2016, 42(5): 162-164. (in Chinese) doi: 10.3969/j.issn.1009-6825.2016.05.087
    [35] 李伟, 马战国, 司道林. 重载铁路曲线几何参数对钢轨磨耗影响的研究[J]. 铁道建筑, 2013(6): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201306041.htm

    LI Wei, MA Zhan-guo, SI Dao-lin. Study on influence of heavy haul railway curve geometric parameters on rail wear[J]. Railway Engineering, 2013(6): 130-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201306041.htm
    [36] 魏家沛, 李国芳. 曲线几何参数对车辆轮轨磨耗的影响[J]. 机械工程与自动化, 2013(2): 33-35. doi: 10.3969/j.issn.1672-6413.2013.02.014

    WEI Jia-pei, LI Guo-fang. Influence of curve geometric parameters on wheel-rail wear of vehicles[J]. Mechanical Engineering and Automation, 2013(2): 33-35. (in Chinese) doi: 10.3969/j.issn.1672-6413.2013.02.014
    [37] 龙许友, 时瑾, 王英杰. 重载铁路线路平纵断面关键参数研究[J]. 铁道工程学报, 2016(1): 30-35. doi: 10.3969/j.issn.1006-2106.2016.01.007

    LONG Xu-you, SHI Jin, WANG Ying-jie. Research on the key parameters of plane and profile for heavy haul railway[J]. Journal of Railway Engineering Society, 2016(1): 30-35. (in Chinese) doi: 10.3969/j.issn.1006-2106.2016.01.007
    [38] 李烨峰. 开行27 t轴重C80E货车条件下轨道适应性分析[J]. 铁道建筑, 2017(4): 95-101. doi: 10.3969/j.issn.1003-1995.2017.04.25

    LI Ye-feng. Track adaptability analysis for freight train C80E with 27 t axle load[J]. Railway Engineering, 2017(4): 95-101. (in Chinese) doi: 10.3969/j.issn.1003-1995.2017.04.25
    [39] 李闯, 张银花, 田常海, 等. 27 t轴重条件下重载铁路钢轨适应性研究[J]. 中国铁道科学, 2019, 40(5): 35-41. doi: 10.3969/j.issn.1001-4632.2019.05.06

    LI Chuang, ZHANG Yin-hua, TIAN Chang-hai, et al. Study on adaptability of rail used for heavy haul railway under 27 t axle load[J]. China Railway Science, 2019, 40(5): 35-41. (in Chinese) doi: 10.3969/j.issn.1001-4632.2019.05.06
    [40] 田光荣, 张卫华, 池茂儒. 重载列车曲线通过性能研究[J]. 铁道学报, 2009, 31(4): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200904020.htm

    TIAN Guang-rong, ZHANG Wei-hua, CHI Mao-ru. Study on curve negotiation performance of heavy-haul train[J]. Journal of the China Railway Society, 2009, 31(4): 98-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200904020.htm
    [41] WU Lei, YAO Xue-song, VANDERMAREL J, et al. Effects of curve radius and rail profile on energy saving in heavy haul achieved by application of top of rail friction modifier[J]. Wear, 2016, 366/367: 279-286. doi: 10.1016/j.wear.2016.07.003
    [42] 李亨利, 李芾, 傅茂海, 等. 曲线几何参数对货车转向架曲线通过性能的影响[J]. 中国铁道科学, 2008, 29(1): 70-75. doi: 10.3321/j.issn:1001-4632.2008.01.015

    LI Heng-li, LI Fu, FU Mao-hai, et al. Influence of curve geometric parameters on the curve negotiation performance of freight car bogies[J]. China Railway Science, 2008, 29(1): 70-75. (in Chinese) doi: 10.3321/j.issn:1001-4632.2008.01.015
    [43] 王开云, 翟婉明, 刘建新, 等. 山区铁路小半径曲线强化轨道动力性能[J]. 交通运输工程学报, 2005, 5(4): 15-19. doi: 10.3321/j.issn:1671-1637.2005.04.004

    WANG Kai-yun, ZHAI Wan-ming, LIU Jian-xin, et al. Dynamic performances of small radius curved track for mountain strengthened railway[J]. Journal of Traffic and Transportation Engineering, 2005, 5(4): 15-19. (in Chinese) doi: 10.3321/j.issn:1671-1637.2005.04.004
    [44] 张志彬, 刘爽, 李华, 等. C80E(H、F)型通用敞车研制[J]. 铁道车辆, 2018, 56(6): 22-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201806008.htm

    ZHANG Zhi-bin, LIU Shuang, LI Hua, et al. Development of C80E(H、F) general purpose gondola cars[J]. Rolling Stock, 2018, 56(6): 22-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201806008.htm
    [45] 段仕会, 徐世锋, 李立东, 等. DZ1型转向架的研制[J]. 铁道车辆, 2016, 54(6): 31-34. doi: 10.3969/j.issn.1002-7602.2016.06.010

    DUAN Shi-hui, XU Shi-feng, LI Li-dong, et al. Development of DZ1 bogies[J]. Rolling Stock, 2016, 54(6): 31-34. (in Chinese) doi: 10.3969/j.issn.1002-7602.2016.06.010
    [46] 杨春雷, 黄运华, 李芾. 我国重载货车转向架曲线性能对比仿真[J]. 西南交通大学学报, 2019, 54(3): 619-625. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201903023.htm

    YANG Chun-lei, HUANG Yun-hua, LI Fu. Comparative study on the curving performance of Chinese railway heavy haul freight bogies[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 619-625. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201903023.htm
    [47] 杨春雷. 重载货车轴重与速度匹配关系研究[D]. 成都: 西南交通大学, 2013.

    YANG Chun-lei. Research on matching relationship between axle load and running speed of heavy haul freight wagon[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese)
    [48] 王开云, 翟婉明. 直线与曲线轨道上车辆悬挂相对位移的计算[J]. 西南交通大学学报, 2003, 38(2): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200302002.htm

    WANG Kai-yun, ZHAI Wan-ming. Calculation of displacements of vehicle suspension on tangent and curved tracks[J]. Journal of Southwest Jiaotong University, 2003, 38(2): 122-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200302002.htm
    [49] 陈果, 翟婉明. 铁路轨道不平顺随机过程的模拟[J]. 西南交通大学学报, 1999, 34(2): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT902.002.htm

    CHEN Guo, ZHAI Wan-ming. Numerical simulation of the stochastic process of railway track irregularities[J]. Journal of Southwest Jiaotong University, 1999, 34(2): 138-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT902.002.htm
    [50] 陈果, 翟婉明, 左洪福. 车辆-轨道耦合系统随机振动响应特性分析[J]. 交通运输工程学报, 2001, 1(1): 13-16. doi: 10.3321/j.issn:1671-1637.2001.01.003

    CHEN Guo, ZHAI Wan-ming, ZUO Hong-fu. Analysis of the random vibration responses characteristics of the vehicle-track coupling system[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 13-16. (in Chinese) doi: 10.3321/j.issn:1671-1637.2001.01.003
    [51] 刘寅华, 李芾, 黄运华. 轨道不平顺数值模拟方法[J]. 交通运输工程学报, 2006, 6(1): 29-33. doi: 10.3321/j.issn:1671-1637.2006.01.006

    LIU Yin-hua, LI Fu, HUANG Yun-hua. Numerical simulation methods of railway track irregularities[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 29-33. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.01.006
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  582
  • HTML全文浏览量:  223
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-22
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回