留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市轨道交通列车车外噪声特性

张凌 周豪 冯青松 陈艳明 雷晓燕

张凌, 周豪, 冯青松, 陈艳明, 雷晓燕. 城市轨道交通列车车外噪声特性[J]. 交通运输工程学报, 2021, 21(3): 238-247. doi: 10.19818/j.cnki.1671-1637.2021.03.016
引用本文: 张凌, 周豪, 冯青松, 陈艳明, 雷晓燕. 城市轨道交通列车车外噪声特性[J]. 交通运输工程学报, 2021, 21(3): 238-247. doi: 10.19818/j.cnki.1671-1637.2021.03.016
ZHANG Ling, ZHOU Hao, FENG Qing-song, CHEN Yan-ming, LEI Xiao-yan. Characteristics of external noise of urban rail transit train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 238-247. doi: 10.19818/j.cnki.1671-1637.2021.03.016
Citation: ZHANG Ling, ZHOU Hao, FENG Qing-song, CHEN Yan-ming, LEI Xiao-yan. Characteristics of external noise of urban rail transit train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 238-247. doi: 10.19818/j.cnki.1671-1637.2021.03.016

城市轨道交通列车车外噪声特性

doi: 10.19818/j.cnki.1671-1637.2021.03.016
基金项目: 

国家自然科学基金项目 52068029

国家自然科学基金项目 51878277

江西省主要学科学术和技术带头人培养计划项目 20194BCJ22008

江西省重点研发计划项目 20192BBE50008

江西省自然科学基金项目 20202BAB204026

详细信息
    作者简介:

    张凌(1978-),女,江西南昌人,华东交通大学讲师,华东交通大学工学博士研究生,从事轨道交通环境振动与噪声研究

    雷晓燕(1956-),男,江西丰城人,华东交通大学教授,工学博士

    通讯作者:

    冯青松(1978-),男,山西榆社人,华东交通大学教授,工学博士

  • 中图分类号: U270.16

Characteristics of external noise of urban rail transit train

Funds: 

National Natural Science Foundation of China 52068029

National Natural Science Foundation of China 51878277

Training Plan for Academic and Technical Leaders of Major Disciplines of Jiangxi Province 20194BCJ22008

Key Research and Development Program of Jiangxi Province 20192BBE50008

Natural Science Foundation ofJiangxi Province 20202BAB204026

More Information
  • 摘要: 基于统计能量分析(SEA)和半无限流体方法,建立6节编组的B型列车车外噪声预测仿真模型;通过试验提取车体SEA模型的振动激励和轮轨噪声激励,施加给车体并计算分析了车外噪声特性;以中国某城市轨道交通列车通过噪声试验对模型进行验证,并探讨了列车各板单元和轮轨噪声声源对车外场点声压的贡献量。研究结果表明:统计能量分析和半无限流体方法能够准确预测车外噪声,计算效率为常规方法的14.1倍;车速为60 km·h-1时,车外7.5和30.0 m处噪声显著频段为400~1 600 Hz,声压级随频率升高先增大后缓慢下降,其变化趋势和轮轨噪声变化趋势一致,最大幅值频率集中在800 Hz处,最大值分别为64.88、61.75 dB(A);车外噪声贡献量由大到小依次为轮轨噪声、车窗、侧墙、车门、底板、顶板、端墙;车体振动辐射噪声在低频段的贡献较大,在中心频率为20~100 Hz时,车外噪声主要来源为车窗、侧墙,其贡献率分别达到21.2%和19.2%;在中心频率为100~500 Hz时,车体各板及轮轨噪声贡献率差异较小;在中心频率为500~5 000 Hz时,车体各板块的贡献率呈缓慢下降趋势,轮轨噪声的贡献率随频率升高逐渐增加,在2 000~5 000 Hz的1/3倍频带内达到60%以上。

     

  • 图  1  双子系统模型

    Figure  1.  Two-subsystem model

    图  2  半无限流体

    Figure  2.  Semi-infinite fluid

    图  3  车外噪声模型

    Figure  3.  Model of external noise

    图  4  车体板块内损耗因子

    Figure  4.  Internal loss factors of vehicle plates

    图  5  声腔传递损失

    Figure  5.  Transmission losses of cavities

    图  6  振动激励测点布置

    Figure  6.  Measurement points arrangement of vibrational excitation

    图  7  传感器现场布置

    Figure  7.  Site layout of sensors

    图  8  车体模型激励

    Figure  8.  Excitations of vehicle model

    图  9  测试布置

    Figure  9.  Arrangement of measurement

    图  10  现场实测

    Figure  10.  Field measurement

    图  11  车体激励加载

    Figure  11.  Excitation loading of vehicle

    图  12  仿真值与试验值1/3倍频程图对比

    Figure  12.  Comparison of 1/3 octave diagrams between simulation and test values

    图  13  车体SEA模型

    Figure  13.  SEA model of vehicle

    图  14  M1、M2点贡献功率级

    Figure  14.  Contributed power levels of M1 and M2

    图  15  M1点声压级贡献率

    Figure  15.  SPL contribution rates of M1

    表  1  结构材料属性

    Table  1.   Properties of structure materials

    结构材料 泊松比 密度/(kg∙m-3) 弹性模量/GPa 应用区域
    铝合金1 0.30 2 700 71.0 顶板、地板
    铝合金2 0.32 2 702 69.0 侧墙、端墙
    玻璃 0.22 2 500 55.0 车窗
    混凝土 0.15 2 390 31.5 桥面板、护栏
    下载: 导出CSV

    表  2  仿真值和试验值A声级对比

    Table  2.   Comparison of A-weighted SPLs between simulation and test values

    通过噪声 7.5 m处 30.0 m处
    30列列车平均值/dB(A) 70.4 66.0
    仿真值/dB(A) 68.8 64.1
    误差/% 2.2 2.9
    下载: 导出CSV

    表  3  计算效率对比

    Table  3.   Comparison of computational efficiencies

    方法 单元数 子系统数 运算时间/s
    本文方法 928 61.3
    边界元法 14 582 20 520.0
    几何声线法 196 870.0
    下载: 导出CSV
  • [1] KING Ⅲ W F, BECHERT D. On the sources of wayside noise generated by high-speed trains[J]. Journal of Sound and Vibration, 1979, 66(3): 311-332. doi: 10.1016/0022-460X(79)90848-4
    [2] 张曙光. 350 km·h-1高速列车噪声机理、声源识别及控制[J]. 中国铁道科学, 2009, 30(1): 86-90. doi: 10.3321/j.issn:1001-4632.2009.01.015

    ZHANG Shu-guang. Noise mechanism, sound source localization and noise control of 350 km·h-1 high-speed train[J]. China Railway Science, 2009, 30(1): 86-90. (in Chinese) doi: 10.3321/j.issn:1001-4632.2009.01.015
    [3] LUI W K, LI K M, NG P L, et al. A comparative study of different numerical models for predicting train noise in high-rise cities[J]. Applied Acoustics, 2006, 67(5): 432-449. doi: 10.1016/j.apacoust.2005.08.005
    [4] NASSIRI P, ABBASPOURM, MAHMOODI M, et al. A rail noise prediction model for the Tehran-Karaj commuter train[J]. Applied Acoustics, 2007, 68(3): 326-333. doi: 10.1016/j.apacoust.2006.02.003
    [5] 蒋忠城, 刘晓波, 王先锋, 等. 轻轨车辆整车噪声预测及验证[J]. 机械设计, 2019, 36(增2): 160-164. https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ2019S2041.htm

    JIANG Zhong-cheng, LIU Xiao-bo, WANG Xian-feng, et al. Vehicle noise prediction and verification for LRV[J]. Journal of Machine Design, 2019, 36(S2): 160-164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ2019S2041.htm
    [6] 谭晓明, 杨志刚, 吴晓龙, 等. CIT500车外噪声源频谱分解模型的试验研究[J]. 铁道学报, 2017, 39(7): 32-37. doi: 10.3969/j.issn.1001-8360.2017.07.005

    TAN Xiao-ming, YANG Zhi-gang, WU Xiao-long, et al. Experimental study on frequency spectrum component model of noise source outside CIT500 train[J]. Journal of the China Railway Society, 2017, 39(7): 32-37. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.07.005
    [7] 王德威, 李帅, 张捷, 等. 高速列车车外噪声预测建模与声源贡献量分析[J]. 中南大学学报(自然科学版), 2018, 49(12): 3113-3120. doi: 10.11817/j.issn.1672-7207.2018.12.026

    WANG De-wei, LI Shuai, ZHANG Jie, et al. Prediction of external noise of high-speed train and analysis of noise source contribution[J]. Journal of Central South University (Science and Technology), 2018, 49(12): 3113-3120. (in Chinese) doi: 10.11817/j.issn.1672-7207.2018.12.026
    [8] LETH S. Train noise reduction scenarios for compliance with future noise legislation[J]. Journal of Sound and Vibration, 2003, 267(3): 675-687. doi: 10.1016/S0022-460X(03)00732-6
    [9] 郑建华. 高速列车车内低频噪声分析与预测研究[D]. 济南: 山东大学, 2015.

    ZHENG Jian-hua. Research on the analysis and prediction of the interior noise of high-speed train in low frequency domain[D]. Jinan: Shandong University, 2015. (in Chinese)
    [10] LIU Han-ru, WEI Jin-jia, QU Zhi-guo. Prediction of aerodynamic noise reduction by using open-cell metal foam[J]. Journal of Sound and Vibration, 2012, 331(7): 1483-1497. doi: 10.1016/j.jsv.2011.11.016
    [11] GOLEBIEWSKI R. Influence of turbulence on train noise[J]. Applied Acoustics, 2016, 113(1): 39-44. http://smartsearch.nstl.gov.cn/paper_detail.html?id=05bf83f000503061ddeb53c176909834
    [12] 李辉, 肖新标, 金学松. 基于神经网络方法的高速列车车外气动噪声预测[J]. 噪声与振动控制, 2015, 35(3): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201503014.htm

    LI Hui, XIAO Xin-biao, JIN Xue-song. Research on exterior aerodynamic noise prediction of high-speed trains based on neural network[J]. Noise and Vibration Control, 2015, 35(3): 56-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201503014.htm
    [13] DITTRICH M G, ZHANG X. The harmonoise/IMAGINE model for traction noise of powered railway vehicles[J]. Journal of Sound and Vibration, 2006, 293(3-5): 986-994. doi: 10.1016/j.jsv.2005.12.022
    [14] LGLESIAS E L, THOMPSON D J, SMITHM G. Component- based model to predict aerodynamic noise from high-speed train pantographs[J]. Journal of Sound and Vibration, 2017, 394(28): 280-305. http://www.sciencedirect.com/science/article/pii/S0022460X17300512
    [15] KIM H, HU Zhi-wei, THOMPSON D. Numerical investigation of the effect of cavity flow on high speed train pantograph aerodynamic noise[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 201: 104159. doi: 10.1016/j.jweia.2020.104159
    [16] 易强, 王平, 赵才友, 等. 高架铁路环境噪声空间分布特性及控制措施效果研究[J]. 铁道学报, 2017, 39(3): 120-127. doi: 10.3969/j.issn.1001-8360.2017.03.019

    YI Qiang, WANG Ping, ZHAO Cai-you, et al. Spatial distribution characteristics and reduction measures of environmental noise in elevated railway region[J]. Journal of the China Railway Society, 2017, 39(3): 120-127. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.03.019
    [17] BUNN F, ZANNIN P H T. Assessment of railway noise in an urban setting[J]. Applied Acoustics, 2016, 104: 16-23. doi: 10.1016/j.apacoust.2015.10.025
    [18] 刘鹏飞. 地铁直立反射型声屏障声场及降噪效果研究[D]. 北京: 北京交通大学, 2018.

    LIU Peng-fei. Research on subway sound field and noise reduction effect of erect and reflective noise barrier[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
    [19] 范静, 张捷, 杨妍, 等. 城际列车C型近轨声屏障降噪效果预测分析[J]. 噪声与振动控制, 2020, 40(2): 188-193, 206. doi: 10.3969/j.issn.1006-1355.2020.02.033

    FAN Jing, ZHANG Jie, YANG Yan, et al. Prediction of noise reduction effect of C-type near-rail barriers for intercity trains[J]. Noise and Vibration Control, 2020, 40(2): 188-193, 206. (in Chinese) doi: 10.3969/j.issn.1006-1355.2020.02.033
    [20] 周信, 肖新标, 何宾, 等. 高速铁路声屏障降噪效果预测及其验证[J]. 机械工程学报, 2013, 49(10): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201310004.htm

    ZHOU Xin, XIAO Xin-biao, HE Bin, et al. Numerical model for predicting the noise reduction of noise barrier of high speed railway and its test validation[J]. Journal of Mechanical Engineering, 2013, 49(10): 14-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201310004.htm
    [21] IVANOV N I, BOIKO I S, SHASHURIN A E. The problem of high-speed railway noise prediction and reduction[J]. Procedia Engineering, 2017, 189: 539-546. doi: 10.1016/j.proeng.2017.05.086
    [22] 徐圣辉, 周信, 陈辉, 等. 近轨低矮声屏障降噪效果影响因素分析[J]. 噪声与振动控制, 2018, 38(5): 139-145. doi: 10.3969/j.issn.1006-1355.2018.05.025

    XU Sheng-hui, ZHOU Xin, CHEN Hui, et al. Analysis of the factors affecting noise reduction of near-rail low-height noise barriers[J]. Noise and Vibration Control, 2018, 38(5): 139-145. (in Chinese) doi: 10.3969/j.issn.1006-1355.2018.05.025
    [23] 周强, 肖新标, 何宾, 等. V型声屏障隔声性能测试及降噪效果预测[J]. 噪声与振动控制, 2014, 34(4): 44-47, 61. doi: 10.3969/j.issn.1006-1335.2014.04.010

    ZHOU Qiang, XIAO Xin-biao, HE Bin, et al. Experimental study on the sound insulation performance and noise reduction effect prediction of V-type noise barriers[J]. Noise and Vibration Control, 2014, 34(4): 44-47, 61. (in Chinese) doi: 10.3969/j.issn.1006-1335.2014.04.010
    [24] 杨妍, 张捷, 何宾, 等. 基于试验测试的桥梁与路堤区段高速列车车外噪声特性分析[J]. 机械工程学报, 2019, 55(20): 188-197. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201920019.htm

    YANG Yan, ZHANG Jie, HE Bin, et al. Analysis on exterior noise characteristics of high-speed trains in bridges and embankments section based on experiment[J]. Journal of Mechanical Engineering, 2019, 55(20): 188-197. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201920019.htm
    [25] 李晏良, 李志强, 何财松, 等. 基于算法优化的中国高速动车组车外噪声源识别研究[J]. 中国铁道科学, 2019, 40(1): 94-101. doi: 10.3969/j.issn.1001-4632.2019.01.13

    LI Yan-liang, LI Zhi-qiang, HE Cai-song, et al. External noise source identification of Chinese high-speed EMU based on algorithm optimization[J]. China Railway Science, 2019, 40(1): 94-101. (in Chinese) doi: 10.3969/j.issn.1001-4632.2019.01.13
    [26] 赵悦, 何远鹏, 韩健, 等. 有轨电车曲线啸叫噪声试验分析[J]. 机械工程学报, 2019, 55(10): 133-141. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201910015.htm

    ZHAO Yue, HE Yuan-peng, HAN Jian, et al. Measurements and analyses of curve squeal caused by tram[J]. Journal of Mechanical Engineering, 2019, 55(10): 133-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201910015.htm
    [27] BLANCHET D, MATLA A S. Building SEA predictive models to support vibro-acoustic ship design[R]. Munich: ESI Global Forum, 2010.
    [28] 毛杰. 多物理场耦合激励下的高速列车车内全频噪声预测与声品质优化[D]. 杭州: 浙江大学, 2015.

    MAO Jie. High-speed train interior full-spectrum noise prediction and sound quality optimization under multi-physical-field coupling excitations[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
    [29] 吴健. 地铁列车车内噪声预测与车体铝型材减振降噪优化[D]. 成都: 西南交通大学, 2016.

    WU Jian. Prediction of interior noise of subway train and optimization of extruded aluminum profile for vibration and noise reduction[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
    [30] 韩健. 地铁列车-嵌入式轨道系统动力学性能及振动噪声特性研究[D]. 成都: 西南交通大学, 2018.

    HAN Jian. Study on dynamic behaviour and vib-acoustic characteristic of metro trian and embedded track system[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  467
  • HTML全文浏览量:  53
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-23
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回