留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车低噪声设计中的部件声学指标分解方法

张捷 姚丹 王瑞乾 肖新标

张捷, 姚丹, 王瑞乾, 肖新标. 高速列车低噪声设计中的部件声学指标分解方法[J]. 交通运输工程学报, 2021, 21(3): 248-257. doi: 10.19818/j.cnki.1671-1637.2021.03.017
引用本文: 张捷, 姚丹, 王瑞乾, 肖新标. 高速列车低噪声设计中的部件声学指标分解方法[J]. 交通运输工程学报, 2021, 21(3): 248-257. doi: 10.19818/j.cnki.1671-1637.2021.03.017
ZHANG Jie, YAO Dan, WANG Rui-qian, XIAO Xin-biao. Decomposition method to determine acoustic indexes of components in low-noise design procedure of high-speed trains[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 248-257. doi: 10.19818/j.cnki.1671-1637.2021.03.017
Citation: ZHANG Jie, YAO Dan, WANG Rui-qian, XIAO Xin-biao. Decomposition method to determine acoustic indexes of components in low-noise design procedure of high-speed trains[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 248-257. doi: 10.19818/j.cnki.1671-1637.2021.03.017

高速列车低噪声设计中的部件声学指标分解方法

doi: 10.19818/j.cnki.1671-1637.2021.03.017
基金项目: 

国家自然科学基金项目 52002257

国家自然科学基金项目 U1934203

国家自然科学基金项目 U1834201

四川省应用基础研究项目 2021YJ0531

高分子材料工程国家重点实验室自主课题 sklpme2020-3-12

详细信息
    作者简介:

    张捷(1987-),男,江苏南京人,四川大学副研究员,工学博士,从事高速列车低噪声设计研究

  • 中图分类号: U270.1

Decomposition method to determine acoustic indexes of components in low-noise design procedure of high-speed trains

Funds: 

National Natural Science Foundation of China 52002257

National Natural Science Foundation of China U1934203

National Natural Science Foundation of China U1834201

Applied Basic Research Program of Sichuan Province 2021YJ0531

State Key Laboratory of Polymer Materials Engineering sklpme2020-3-12

More Information
  • 摘要: 提出了一种基于整车噪声仿真分析的部件声学指标分解方法;将高速列车的部件声学指标按类型分为声源指标和路径指标2种主要形式,分别基于声线法和统计能量分析方法建立了高速列车的车外噪声预测模型和车内噪声预测模型,通过选定的初始参数作为计算输入,预测车外、车内噪声,并与车辆顶层声学指标进行差异化对比分析;基于声源贡献、路径贡献与参数灵敏度分析,考虑多目标优化,确定了声源部件和路径部件的声学指标。研究结果表明:噪声源的指标分解,基于整车车外噪声仿真分析,当车外噪声预测结果满足声学设计目标且设计裕量在可接受范围之内时,此时的声源参数输入即可作为一组声源指标分解结果;对于传声路径的指标分解,基于整车车内噪声仿真分析,当车内噪声满足声学设计目标且设计裕量在可接受范围之内时,此时的路径参数输入即可作为一组路径指标分解结果;当声源指标或路径指标不满足整车噪声要求时,则需要进行声源或路径的贡献分析,计算主要贡献声源或路径的参数灵敏度,通过对主要贡献声源或者路径进行修正迭代,使之最终满足声学设计目标;低噪声设计需要不断综合多项指标的反馈,合理地调整部件声学指标,确保声学指标分解满足顶层目标,且具有可行性。

     

  • 图  1  高速列车声源和传声路径

    Figure  1.  Sound sources and transfer paths of high-speed train

    图  2  高速列车低噪声正向设计流程

    Figure  2.  Low-noise forward design procedure of high-speed train

    图  3  部件声学指标分解流程

    Figure  3.  Decomposition procedure of component acoustic indexes

    图  4  高速列车车外噪声仿真模型

    Figure  4.  Exterior noise simulation model of high-speed train

    图  5  高速列车车体区域划分

    Figure  5.  Carbody region division of high-speed train

    图  6  车外噪声声源贡献率

    Figure  6.  Contribution rates of exterior sound sources

    图  7  不同声源对车外噪声的声学灵敏度

    Figure  7.  Acoustic sensitivities of different sound sources on exterior noise

    图  8  高速列车车内噪声仿真模型

    Figure  8.  Interior noise simulation models of high-speed train

    图  9  噪声功率输入贡献率

    Figure  9.  Contribution rates of noise power inputs

    图  10  地板隔声对车内噪声的声学灵敏度

    Figure  10.  Acoustic sensitivity of floor sound insulation on interior noise

  • [1] 沈志云. 高速列车的动态环境及其技术的根本特点[J]. 铁道学报, 2006, 28(4): 1-5. doi: 10.3321/j.issn:1001-8360.2006.04.001

    SHEN Zhi-yun. Dynamic environment of high-speed train and its distinguished technology[J]. Journal of the China Railway Society, 2006, 28(4): 1-5. (in Chinese) doi: 10.3321/j.issn:1001-8360.2006.04.001
    [2] 翟婉明, 赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001

    ZHAI Wan-ming, ZHAO Chun-fa. Frontiers and challenges of science and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.02.001
    [3] 杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45: 201507. doi: 10.6052/1000-0992-14-002

    YANG Guo-wei, WEI Yu-jie, ZHAO Gui-lin, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45: 201507. (in Chinese) doi: 10.6052/1000-0992-14-002
    [4] JIN Xue-song. Key problems faced in high-speed train operation[J]. Journal of Zhejiang University—Science A, 2014, 15(12): 936-945.
    [5] HARDY A E J. Railway passengers and noise[J]. Journal of Rail and Rapid Transit, 1999, 213(3): 173-180. doi: 10.1243/0954409991531128
    [6] 葛剑敏, 郭磊, 高阳, 等. 温度梯度下高速列车噪声控制研究综述[J]. 中国基础科学, 2018, 20(6): 15-18, 46. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201806004.htm

    GE Jian-min, GUO Lei, GAO Yang, et al. An overview of study on noise control ofhigh speed trains based on temperature gradient[J]. China Basic Science, 2018, 20(6): 15-18, 46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201806004.htm
    [7] 沈火明, 张玉梅, 肖新标, 等. 高速列车波纹外地板低噪声优化设计[J]. 交通运输工程学报, 2011, 11(2): 65-71. doi: 10.3969/j.issn.1671-1637.2011.02.011

    SHEN Huo-ming, ZHANG Yu-mei, XIAO Xin-biao, et al. Low-noise optimization design of external corrugated floor for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 65-71. (in Chinese) doi: 10.3969/j.issn.1671-1637.2011.02.011
    [8] YAO Dan, ZHANG Jie, WANG Rui-qian, et al. Lightweight design and sound insulation characteristic optimisation of railway floating floor structures[J]. Applied Acoustics, 2019, 156: 66-77. doi: 10.1016/j.apacoust.2019.07.005
    [9] YAO Dan, ZHANG Jie, WANG Rui-qian, et al. Vibroacoustic damping optimisation of high-speed train floor panels in low- and mid-frequency range[J]. Applied Acoustics, 2021, 174: 107788. doi: 10.1016/j.apacoust.2020.107788
    [10] 汪泉, 陈进, 程江涛, 等. 低噪声风力机翼型设计方法及实验分析[J]. 北京航空航天大学学报, 2015, 41(1): 23-28. doi: 10.3969/j.issn.1005-4561.2015.01.010

    WANG Quan, CHEN Jin, CHENG Jiang-tao, et al. Wind turbine airfoil design method with low noise and experimental analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 23-28. (in Chinese) doi: 10.3969/j.issn.1005-4561.2015.01.010
    [11] 马骋, 钱正芳, 陈科, 等. 新型低噪声多叶耦合螺旋桨性能研究[J]. 船舶力学, 2014, 18(8): 889-897. doi: 10.3969/j.issn.1007-7294.2014.08.003

    MA Pin, QIAN Zheng-fang, CHEN Ke, et al. Research on performance of a new-type low-noise multi-blade coupling propeller[J]. Journal of Ship Mechanics, 2014, 18(8): 889-897. (in Chinese) doi: 10.3969/j.issn.1007-7294.2014.08.003
    [12] 张明宇, 王永生, 林瑞霖, 等. 泵喷推进器低噪声优化设计[J]. 华中科技大学学报(自然科学版), 2019, 47(3): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201903002.htm

    ZHANG Ming-yu, WANG Yong-sheng, LIN Rui-lin, et al. Low-noise optimization design of pumpjet[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(3): 7-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201903002.htm
    [13] 何涛, 郝夏影, 王锁泉, 等. 低噪声控制阀优化设计及试验验证[J]. 船舶力学, 2017, 21(5): 642-650. doi: 10.3969/j.issn.1007-7294.2017.05.015

    HE Tao, HAO Xia-ying, WANG Suo-quan, et al. Optimization design and experimental verification on low noise control valve[J]. Journal of Ship Mechanics, 2017, 21(5): 642-650. (in Chinese) doi: 10.3969/j.issn.1007-7294.2017.05.015
    [14] 王连生, 郝志勇, 景囯玺. 基于多目标形貌优化的缸盖罩低噪声设计[J]. 西南交通大学学报, 2012, 47(6): 1064-1068. doi: 10.3969/j.issn.0258-2724.2012.06.024

    WANG Lian-sheng, HAO Zhi-yong, JING Guo-xi, et al. Low noise design of cylinder head cover based on multi-objective topography optimization[J]. Journal of Southwest Jiaotong University, 2012, 47(6): 1064-1068. (in Chinese) doi: 10.3969/j.issn.0258-2724.2012.06.024
    [15] 张捷. 高速列车车内低噪声设计方法及试验研究[D]. 成都: 西南交通大学, 2018.

    ZHANG Jie. An approach of low noise design and experimental investigations into interior noise of high speed trains[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [16] ZHANG Jie, XIAO Xin-biao, SHENG Xiao-zhen, et al. An acoustic design procedure for controlling interior noise of high-speed trains[J]. Applied Acoustics, 2020, 168: 107419. doi: 10.1016/j.apacoust.2020.107419
    [17] ZHANG Jie, XIAO Xin-biao, SHENG Xiao-zhen, et al. Characteristics of interior noise of a Chinese high-speed train under a variety of conditions[J]. Journal of Zhejiang University—Science A, 2017, 18(8): 617-630. doi: 10.1631/jzus.A1600695
    [18] ZHANG Jie, XIAO Xin-biao, SHENG Xiao-zhen, et al. A systematic approach to identify sources of abnormal interior noise for a high-speed train[J]. Shock and Vibration, 2018, 2018: 5085847 http://www.ingentaconnect.com/content/rsoc/10709622/2018/00002018/00000005/art00029
    [19] ZHANG Jie, XIAO Xin-biao, SHENG Xiao-zhen, et al. Sound source localisation for a high-speed train and its transfer path to interior noise[J]. Chinese Journal of Mechanical Engineering, 2019, 32: 1-16. doi: 10.1186/s10033-018-0313-7
    [20] EADE P W, HARDY A E J. Railway vehicle internal noise[J]. Journal of Sound and Vibration, 1977, 51(3): 403-415. doi: 10.1016/S0022-460X(77)80083-7
    [21] 王德威, 李帅, 张捷, 等. 高速列车车外噪声预测建模与声源贡献量分析[J]. 中南大学学报(自然科学版), 2018, 49(12) 3113-3120. doi: 10.11817/j.issn.1672-7207.2018.12.026

    WANG De-wei, LI Shuai, ZHANG Jie, et al. Prediction of external noise of high-speed train and analysis of noise source contribution[J]. Journal of Central South University (Science and Technology), 2018, 49(12): 3113-3120. (in Chinese) doi: 10.11817/j.issn.1672-7207.2018.12.026
    [22] 周信, 肖新标, 何宾, 等. 高速铁路声屏障降噪效果预测及其验证[J]. 机械工程学报, 2013, 49(10): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201310004.htm

    ZHOU Xin, XIAO Xin-biao, HE Bin, et al. Numerical model for predicting the noise reduction of noise barrier of high speed railway and its test validation[J]. Journal of Mechanical Engineering, 2013, 49(10): 14-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201310004.htm
    [23] 陈书明, 王登峰, 刘波, 等. 基于统计能量分析和半无限流体方法的轿车车外噪声预测[J]. 中国公路学报, 2010, 23(2): 111-115. doi: 10.3969/j.issn.1001-7372.2010.02.018

    CHEN Shu-ming, WANG Deng-feng, LIU Bo, et al. Car exterior noise prediction based on statistical energy analysis and semi-infinite fluid method[J]. China Journal of Highway and Transport, 2010, 23(2): 111-115. (in Chinese) doi: 10.3969/j.issn.1001-7372.2010.02.018
    [24] ZHANG Jie, XIAO Xin-biao, WANG De-wei, et al. Source contribution analysis for exterior noise of a high-speed train: experiments and simulations[J]. Shock and Vibration, 2018, 2018: 5319460.
    [25] ZHENG Xu, HAO Zhi-yong, WANG Xu, et al. A full-spectrum analysis of high-speed train interior noise under multi-physical-field coupling excitations[J]. Mechanical Systems and Signal Processing, 2016, 75: 525-543. doi: 10.1016/j.ymssp.2015.12.010
    [26] THOMPSON D J, JONES C J C. Sound radiation from a vibrating railway wheel[J]. Journal of Sound and Vibration, 2002, 253(2): 401-419. doi: 10.1006/jsvi.2001.4061
    [27] 田红旗. 中国高速轨道交通空气动力学研究进展及发展思考[J]. 中国工程科学, 2015, 17(4): 30-41. doi: 10.3969/j.issn.1009-1742.2015.04.004

    TIAN Hong-qi. Development of research on aerodynamics of high-speed rails in China[J]. Strategic study of CAE, 2015, 17(4): 30-41. (in Chinese) doi: 10.3969/j.issn.1009-1742.2015.04.004
    [28] 张捷, 姚丹, 王瑞乾, 等. 基于试验统计能量分析的高速列车车内噪声预测方法[J]. 铁道学报, 2020, 42(11): 45-52. doi: 10.3969/j.issn.1001-8360.2020.11.007

    ZHANG Jie, YAO Dan, WANG Rui-qian, et al. An approach for interior noise prediction of high-speed trains based on experimental statistical energy analysis[J]. Journal of the China Railway Society, 2020, 42(11): 45-52. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.11.007
    [29] ZHAO Y J, DENG X, LIU S Q, et al. Interior noise prediction of high-speed train based on hybrid FE-SEA method[C]//Springer. Noise and Vibration Mitigation for Rail Transportation System. Berlin: Springer, 2015: 699-705.
    [30] 代文强, 郑旭, 郝志勇, 等. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403. doi: 10.3785/j.issn.1008-973X.2019.12.018

    DAI Wen-qiang, ZHENG Xu, HAO Zhi-yong, et al. Prediction of high-speed train interior noise using energy finite element analysis[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(12): 2396-2403. (in Chinese) doi: 10.3785/j.issn.1008-973X.2019.12.018
    [31] ZHANG Jie, YAO Dan, WANG Rui-qian, et al. Vibro-acoustic modelling of high-speed train composite floor and contribution analysis of its constituent materials[J]. Composite Structures, 2021, 256: 113049. doi: 10.1016/j.compstruct.2020.113049
  • 加载中
图(10)
计量
  • 文章访问数:  342
  • HTML全文浏览量:  149
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-26
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回