留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受电弓区域气动激励特性及其对车内噪声的影响

张淑敏 史佳伟 圣小珍

张淑敏, 史佳伟, 圣小珍. 受电弓区域气动激励特性及其对车内噪声的影响[J]. 交通运输工程学报, 2021, 21(3): 258-268. doi: 10.19818/j.cnki.1671-1637.2021.03.018
引用本文: 张淑敏, 史佳伟, 圣小珍. 受电弓区域气动激励特性及其对车内噪声的影响[J]. 交通运输工程学报, 2021, 21(3): 258-268. doi: 10.19818/j.cnki.1671-1637.2021.03.018
ZHANG Shu-min, SHI Jia-wei, SHENG Xiao-zhen. Aerodynamic excitation characteristics of pantograph area and their effects on interior noise[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 258-268. doi: 10.19818/j.cnki.1671-1637.2021.03.018
Citation: ZHANG Shu-min, SHI Jia-wei, SHENG Xiao-zhen. Aerodynamic excitation characteristics of pantograph area and their effects on interior noise[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 258-268. doi: 10.19818/j.cnki.1671-1637.2021.03.018

受电弓区域气动激励特性及其对车内噪声的影响

doi: 10.19818/j.cnki.1671-1637.2021.03.018
基金项目: 

国家自然科学基金项目 U1834201

国家重点研发计划项目 2016YFE0205200

详细信息
    作者简介:

    张淑敏(1990-),女,山东临沂人,西南交通大学工学博士研究生,从事铁路振动与噪声研究

    圣小珍(1962-),男,江西永新人,上海工程技术大学教授, 工学博士

  • 中图分类号: U270.16

Aerodynamic excitation characteristics of pantograph area and their effects on interior noise

Funds: 

National Natural Science Foundation of China U1834201

National Key Research and Development Program of China 2016YFE0205200

More Information
  • 摘要: 基于三维可压缩黏性流体模型对350 km·h-1速度下受电弓区域的非定常流场进行模拟,分析了受电弓底板上的脉动压力特征;利用波数滤波方法,对底板区域的脉动压力进行分离,得到了对流压力和声学压力,分析了2种压力在波数和频率域的特性;基于统计能量分析方法建立了简化的受电弓区域车内噪声预测模型,分析了2种激励对车内噪声的影响。研究结果表明:受电弓底板上的脉动压力具有显著的低频特性,随着频率升高,受电弓底板上脉动压力的幅值迅速减小;受电弓底架和绝缘子尾涡是影响受电弓底板上脉动压力幅值的主要因素;对350 km·h-1的高速列车气动噪声问题,波数滤波方法能够较好地将2种激励分离;受电弓底板上的声学压力幅值远小于对流压力,主要的差异频段为800~3 500 Hz,最大差异接近20 dB, 随着频率增加,二者差异变小;虽然声学压力的幅值远小于对流压力,但其对车内噪声的影响却大于对流压力,当频率高于2 500 Hz后,声学压力激励导致的车内声压级响应比对流压力高约10~20 dB,这是由于2种激励在波数空间内的能量分布差异,使得声学压力具有更高的透射效率,特别是当频率高于结构的吻合频率后,声压的贡献占绝对优势,对车内噪声的影响不可忽视。

     

  • 图  1  受电弓区域几何模型

    Figure  1.  Geometric model of pantograph area

    图  2  受电弓外流场计算域

    Figure  2.  Calculation domain of external flow field of pantograph

    图  3  网格划分

    Figure  3.  Mesh generation

    图  4  不同频率下受电弓底板上的脉动压力级

    Figure  4.  Fluctuating pressure levels of pantograph platform at different frequencies

    图  5  受电弓区域Q准则等值面显示的涡结构(Q=8 000)

    Figure  5.  Vortex structure displayed by Q-criterion isosurface of pantograph area (Q = 8 000)

    图  6  受电弓底板不同测点频谱

    Figure  6.  Spectra of different measuring points on pantograph platform

    图  7  声学压力、对流压力和5 mm厚铝板的频率-波数关系

    Figure  7.  Frequency-wavenumber relationships of acoustic pressure, convective pressure and a 5 mm thick aluminium panel

    图  8  受电弓底板网格

    Figure  8.  Grids of pantograph platform

    图  9  不同y值对应的x方向的波数-频率域的压力谱

    Figure  9.  Pressure spectra in wavenumber-frequency domain in x direction corresponding to different y values

    图  10  x方向对流压力和声学压力的划分

    Figure  10.  Division of convective pressure and acoustic pressure in x direction

    图  11  不同频率下kx-ky域的压力谱

    Figure  11.  Pressure spectra in kx-ky domain at different frequencies

    图  12  2种激励的积分区域划分

    Figure  12.  Integral domain division of 2 excitations

    图  13  受电弓底板区域的总压力、对流压力和声学压力

    Figure  13.  Total pressure, convective pressure and acoustic pressure of pantograph platform

    图  14  受电弓区域车内噪声预测模型

    Figure  14.  Prediction model of interior noise of pantograph area

    图  15  不同激励加载方式

    Figure  15.  Loading modes of different excitations

    图  16  声腔的声压级响应

    Figure  16.  Responses of sound pressure level of a cavity

  • [1] THOMPSON D J, IGLESIAS E L, LIU X, et al. Recent developments in the prediction and control of aerodynamic noise from high-speed trains[J]. International Journal of Rail Transportation, 2015, 3(3): 119-150. doi: 10.1080/23248378.2015.1052996
    [2] 沈志云. 高速列车的动态环境及其技术的根本特点[J]. 铁道学报, 2006, 28(4): 1-5. doi: 10.3321/j.issn:1001-8360.2006.04.001

    SHEN Zhi-yun. Dynamic environment of high-speed train and its distinguished technology[J]. Journal of the China Railway Society, 2006, 28(4): 1-5. (in Chinese) doi: 10.3321/j.issn:1001-8360.2006.04.001
    [3] NOGER C, PATRAR J C, PEUBE J, et al. Aeroacoustical study of the TGV pantograph recess[J]. Journal of Sound and Vibration, 2000, 231(3): 563-575. doi: 10.1006/jsvi.1999.2545
    [4] YU Hua-hua, LI Jia-chun, ZHANG Hui-qin. On aerodynamic noises radiated by the pantograph system of high-speed trains[J]. Acta Mechanica Sinica, 2013, 29(3): 399-410. doi: 10.1007/s10409-013-0028-z
    [5] ZHANG Ya-dong, ZHANG Ji-ye, LI Tian, et al. Investigation of the aeroacoustic behavior and aerodynamic noise of a high-speed train pantograph[J]. Science China Technological Sciences, 2017, 60(4): 561-575. doi: 10.1007/s11431-016-0649-6
    [6] TAN Xiao-ming, YANG Zhi-gang, TAN Xi-ming, et al. Vortex structures and aeroacoustic performance of the flow field of the pantograph[J]. Journal of Sound and Vibration, 2018, 432: 17-32. doi: 10.1016/j.jsv.2018.06.025
    [7] KIM H, HU Z, THOMPSON D. Numerical investigation of the effect of cavity flow on high speed train pantograph aerodynamic noise[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 201: 104159. doi: 10.1016/j.jweia.2020.104159
    [8] 刘加利, 于梦阁, 田爱琴, 等. 高速列车受电弓气动噪声特性研究[J]. 机械工程学报, 2018, 54(4): 231-237. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804034.htm

    LIU Jia-li, YU Meng-ge, TIAN Ai-qin, et al. Study on the aerodynamic noise characteristics of the pantograph of the high-speed train[J]. Journal of Mechanical Engineering, 2018, 54(4): 231-237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804034.htm
    [9] 李辉, 肖新标, 李志辉, 等. 某型受电弓300 km/h速度下气动噪声初步分析[J]. 铁道学报, 2016, 38(9): 18-22. doi: 10.3969/j.issn.1001-8360.2016.09.003

    LI Hui, XIAO Xin-biao, LI Zhi-hui, et al. Preliminary investigation into aerodynamic noise of a certain type of pantograph under speed of 300 km/h[J]. Journal of the China Railway Society, 2016, 38(9): 18-22. (in Chinese) doi: 10.3969/j.issn.1001-8360.2016.09.003
    [10] KURITA T, WAKABAYASHI Y, YAMADA H, et al. Reduction of wayside noise from Shinkansen high-speed trains[J]. Journal of Mechanical Systems for Transportation and Logistics, 2011, 4(1): 1-12. doi: 10.1299/jmtl.4.1
    [11] 张亚东, 韩璐, 李明, 等. 高速列车受电弓气动噪声降噪[J]. 机械工程学报, 2017, 53(6): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201706014.htm

    ZHANG Ya-dong, HAN Lu, LI Ming, et al. Reduction of aerodynamic noise of high-speed train pantograph[J]. Journal of Mechanical Engineering, 2017, 53(6): 94-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201706014.htm
    [12] 黄凯莉, 袁天辰, 杨俭, 等. 基于射流的高速列车受电弓空腔气动噪声降噪方法[J]. 铁道学报, 2020, 42(7): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007008.htm

    HUANG Kai-li, YUAN Tian-chen, YANG Jian, et al. Approach of reduction of aerodynamic noise of pantograph cavity of high-speed train based on jet[J]. Journal of the China Railway Society, 2020, 42(7): 50-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007008.htm
    [13] 廖欣, 梁君海, 孙召进, 等. 受电弓对高速列车噪声的影响[C]//姚蓝. 2011中国西部声学学术交流会论文集. 北京: 中国声学学会, 2011: 175-178.

    LIAO Xin, LIANG Jun-hai, SUN Zhao-jin, et al. Pantograph's impact on the noise of high-speed train[C]//YAO Lan. Proceedings of the 2011 Symposium on Acoustics in Western China. Beijing: The Acoustical Society of China, 2011: 175-178. (in Chinese)
    [14] 郭建强, 葛剑敏, 张华丽. 高速列车受电弓区车内噪声研究与控制[J]. 振动、测试与诊断, 2017, 37(4): 662-666. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201704006.htm

    GUO Jian-qiang, GE Jian-min, ZHANG Hua-li. Internal noise research and control measures of pantograph area of high-speed trains[J]. Journal of Vibration, Measurement and Diagnosis, 2017, 37(4): 662-666. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201704006.htm
    [15] EWER T R, SCHRÖDER W. Acoustic perturbation equations based on flow decomposition via source filtering[J]. Journal of Computational Physics, 2003, 188(2): 365-398. doi: 10.1016/S0021-9991(03)00168-2
    [16] BLANCHET D, GOLOTA A, ZERBIB N, et al. Wind noise source characterization and how it can be used to predict vehicle interior noise[J]. SAE Technical, 2014, DOI: 10.4271/2014-01-2052.
    [17] VANHERPE F, BARESH D, LAFON P, et al. Wavenumber-frequency analysis of the wall pressure fluctuations in the wake of a car side mirror[C]//AIAA. 17th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2011: 5-8.
    [18] SCHELL A, COTONI V. Prediction of interior noise in a sedan due to exterior flow[J]. SAE International Journal of Passenger Cars—Mechanical Systems, 2015, 8(3): 1090-1096. doi: 10.4271/2015-01-2331
    [19] KARLSSON M, LARSSON R, AGREN T, et al. Aeroacoustics of heavy duty truck side mirrors—an experimental study[J]. SAE Technical, 2014, DOI: 10.4271/2018-01-1516.
    [20] HE Yin-zhi, SCHRDER S, SHI Zi-hao, et al. Wind noise source filtering and transmission study through a side glass of DrivAer model[J]. Applied Acoustics, 2020, 160: 107161. doi: 10.1016/j.apacoust.2019.107161
    [21] HE Yin-zhi, WAN Rong-xin, LIU Yong-ming, et al. Transmission characteristics and mechanism study of hydrodynamic and acoustic pressure through a side window of DrivAer model based on modal analytical approach[J]. Journal of Sound and Vibration, 2021, 501: 116058. doi: 10.1016/j.jsv.2021.116058
    [22] 肖友刚, 田红旗, 张洪. 高速列车司机室内气动噪声预测[J]. 交通运输工程学报, 2008, 8(3): 10-14. doi: 10.3321/j.issn:1671-1637.2008.03.003

    XIAO You-gang, TIAN Hong-qi, ZHANG Hong. Prediction of interior aerodynamic noise of high-speed train cab[J]. Journal of Traffic and Transportation Engineering, 2008, 8(3): 10-14. (in Chinese) doi: 10.3321/j.issn:1671-1637.2008.03.003
    [23] 卢勇, 张继业, 刘加利. 高速列车车内低频气动噪声预测[J]. 计算机辅助工程, 2013, 22(5): 7-13. doi: 10.3969/j.issn.1006-0871.2013.05.002

    LU Yong, ZHANG Ji-ye, LIU Jia-li. Prediction of interior low frequency aerodynamic noise of high speed train[J]. Computer Aided Engineering, 2013, 22(5): 7-13. (in Chinese) doi: 10.3969/j.issn.1006-0871.2013.05.002
    [24] 刘加利, 于梦阁, 田爱琴, 等. 基于统计能量分析的高速列车车内气动噪声研究[J]. 机械工程学报, 2017, 53(10): 136-144. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201710017.htm

    LIU Jia-li, YU Meng-ge, TIAN Ai-qin, et al. Study on the interior aerodynamic noise of the high-speed train based on the statistical energy analysis[J]. Journal of Mechanical Engineering, 2017, 53(10): 136-144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201710017.htm
    [25] 高阳, 李启良, 陈羽, 等. 高速列车头型近场与远场噪声预测[J]. 同济大学学报(自然科学版), 2019, 47(1): 124-129. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201901016.htm

    GAO Yang, LI Qi-liang, CHEN Yu, et al. Prediction of near field and far field noise for high-speed train head shape[J]. Journal of Tongji University (Natural Science), 2019, 47(1): 124-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201901016.htm
    [26] ZHAO Yue-ying, YANG Zhi-gang, LI Qi-liang, et al. Analysis of the near-field and far-field sound pressure generated by high-speed trains pantograph system[J]. Applied Acoustics, 2020, 169: 107506. doi: 10.1016/j.apacoust.2020.107506
    [27] LEE S, CHEONG C, KIM J, et al. Numerical analysis and characterization of surface pressure fluctuations of high-speed trains using wavenumber-frequency analysis[J]. Applied Sciences, 2019, 9(22): 4924. doi: 10.3390/app9224924
    [28] HOLMÉN V. Methods for vortex identification[D]. Lund: Lund University, 2012.
    [29] CROCKER M J, PRICE A J. Sound transmission using statistical energy analysis[J]. Journal of Sound and Vibration, 1969, 9(3): 469-486. doi: 10.1016/0022-460X(69)90185-0
    [30] LANGLEY R S, SHORTER P J. The wave transmission coefficients and coupling loss factors of point connected structures[J]. Journal of the Acoustical Society of America, 2003, 113(4): 1947-1964. doi: 10.1121/1.1515791
  • 加载中
图(16)
计量
  • 文章访问数:  337
  • HTML全文浏览量:  95
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-19
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回