留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽温域下高速轮轨界面粘着与车轮表面损伤行为

沈明学 秦涛 李圣鑫 彭金方 熊光耀 朱旻昊

沈明学, 秦涛, 李圣鑫, 彭金方, 熊光耀, 朱旻昊. 宽温域下高速轮轨界面粘着与车轮表面损伤行为[J]. 交通运输工程学报, 2021, 21(3): 269-278. doi: 10.19818/j.cnki.1671-1637.2021.03.019
引用本文: 沈明学, 秦涛, 李圣鑫, 彭金方, 熊光耀, 朱旻昊. 宽温域下高速轮轨界面粘着与车轮表面损伤行为[J]. 交通运输工程学报, 2021, 21(3): 269-278. doi: 10.19818/j.cnki.1671-1637.2021.03.019
SHEN Ming-xue, QIN Tao, LI Sheng-xin, PENG Jin-fang, XIONG Guang-yao, ZHU Min-hao. High-speed wheel-rail interfacial adhesion and surface damage behavior of wheel in wide temperature range[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 269-278. doi: 10.19818/j.cnki.1671-1637.2021.03.019
Citation: SHEN Ming-xue, QIN Tao, LI Sheng-xin, PENG Jin-fang, XIONG Guang-yao, ZHU Min-hao. High-speed wheel-rail interfacial adhesion and surface damage behavior of wheel in wide temperature range[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 269-278. doi: 10.19818/j.cnki.1671-1637.2021.03.019

宽温域下高速轮轨界面粘着与车轮表面损伤行为

doi: 10.19818/j.cnki.1671-1637.2021.03.019
基金项目: 

国家自然科学基金项目 52061012

国家自然科学基金项目 51965019

牵引动力国家重点实验室开放课题 TPL1906

江西省工程技术研究中心计划项目 20171BCD40009

详细信息
    作者简介:

    沈明学(1982-),男,浙江嘉兴人,华东交通大学教授,工学博士,从事轮轨摩擦学与表面工程防护研究

  • 中图分类号: U211.5

High-speed wheel-rail interfacial adhesion and surface damage behavior of wheel in wide temperature range

Funds: 

National Natural Science Foundation of China 52061012

National Natural Science Foundation of China 51965019

Open Project of State Key Laboratory of Traction Power TPL1906

Engineering Technology Research Center Project of Jiangxi Province 20171BCD40009

More Information
  • 摘要: 搭建了高低温服役环境轮轨滚动试验台,在实验室条件下成功再现了哈大线等高寒铁路冬季车轮表面剥落和麻点严重、夏季异常光滑的季节性损伤特征;研究了宽温域(-50 ℃~60 ℃)下高速列车轮轨界面粘着和车轮损伤行为,系统探讨了不同服役温度下轮轨滚动接触界面的粘着系数演变规律,分析了车轮表面磨损形貌和表层材料塑变行为等重要特性。研究结果表明:随着服役温度的提高,轮轨界面粘着系数总体呈下降趋势,同时,车轮表面的凹坑尺寸减小,在高温60 ℃时,凹坑特征消失,磨损表面变得较为平整;在低温-40 ℃时,车轮表面最为粗糙,算术平均粗糙度为3.74,而随着服役温度的上升,磨损表面粗糙度显著下降,在高温60 ℃时,车轮表面算术平均粗糙度较小,为0.97;随着服役温度的升高,轮轨接触界面的磨损区域内Fe元素含量与O元素含量之比逐渐减小;低温低湿环境抑制了轮轨界面的摩擦氧化作用,增强了摩擦剪切作用,加剧了车轮表面的剥落、严重的塑性变形和表面疲劳裂纹的萌生与扩展,因此,磨损表面较为粗糙;而高温环境加速了轮轨界面的摩擦氧化作用,氧化磨屑的形成一定程度上起到了固体润滑作用,从而降低了轮轨界面间的粘着,车轮表面相对光滑;磨损机制由低温(-50 ℃~-20 ℃)服役工况下的疲劳磨损逐渐转变为常温(20 ℃)工况下的磨粒磨损和氧化磨损与高温(40 ℃~60 ℃)工况下的粘着磨损。

     

  • 图  1  温度可控轮轨滚动接触疲劳/磨损试验台

    Figure  1.  Temperature-controlled wheel-rail rolling contact fatigue/wear testing

    图  2  取样位置

    Figure  2.  Sampling positions

    图  3  轮轨试样

    Figure  3.  Samples of wheel and rail

    图  4  轮轨粘着系数随滚动摩擦时间的变化曲线

    Figure  4.  Changing curves of wheel-rail adhesive coefficients with rolling friction times

    图  5  轮轨粘着系数和环境湿度随环境温度变化曲线

    Figure  5.  Changing curves of wheel-rail adhesion coefficient and environment humidity with ambient temperature

    图  6  不同服役温度下的车轮表面磨损全貌与局部放大形貌

    Figure  6.  Morphologies of whole wear and local magnification of wheel surface at different service temperatures

    图  7  车轮表面磨痕宽度和塑性变形层厚度随服役温度的变化曲线

    Figure  7.  Changing curves of wear trace widths and plastic deformation layer thicknesses on wheel surface with service temperatures

    图  8  不同服役温度下车轮表面磨损3D形貌

    Figure  8.  Wear 3D morphologies of wheel surface at different service temperatures

    图  9  不同服役温度下车轮表面粗糙度变化曲线

    Figure  9.  Changing curves of surface roughnesses at different service temperatures

    图  10  哈大线不同季节车轮典型损伤特征

    Figure  10.  Typical damage characteristics of wheels of Harbin-Dalian Railway in different seasons

    图  11  极端服役温度下车轮磨损区域的EDX谱图

    Figure  11.  EDX spectrums of wheel wear area at extreme service temperatures

    图  12  不同服役温度下车轮磨损表面O和Fe元素含量对比

    Figure  12.  Comparison of O and Fe contents on wheel wear surface at different service temperatures

    表  1  轮轨材料化学成分

    Table  1.   Chemical composition of wheel and rail materials %

    试样 材料 C Si Mn P S
    车轮 ER8 0.580 0.020 0.750 0.015 0.013
    钢轨 U71Mn 0.690 0.200 1.150 0.020 0.012
    下载: 导出CSV

    表  2  极端服役温度下车轮磨损区域内主要元素含量

    Table  2.   Main element contents of wheel wear area at extreme service temperatures

    温度/℃ 扫描区域 Fe/% O/% C/%
    -50 EDX 01# 71.16 18.47 10.37
    -50 EDX 02# 53.10 32.85 14.05
    60 EDX 03# 53.98 33.85 12.17
    60 EDX 04# 40.08 52.36 7.56
    下载: 导出CSV
  • [1] LYU Ye-zhe, BERGSETH E, WAHLSTRÖM J, et al. A pin-on-disc study on the tribology of cast iron, sinter and composite railway brake blocks at low temperatures[J]. Wear, 2019, 424/425: 48-52. doi: 10.1016/j.wear.2019.01.110
    [2] 马蕾, 王文健, 郭俊, 等. 低温下高速车轮材料滚动磨损与疲劳损伤行为[J]. 机械工程学报, 2017, 53(20): 113-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201720015.htm

    MA Lei, WANG Wen-jian, GUO Jun, et al. Rolling wear and fatigue damage behavior of high-speed wheel materials at low temperature[J]. Journal of Mechanical Engineering, 2017, 53(20): 113-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201720015.htm
    [3] LYU Ye-zhe, BERGSETH E, OLOFSSON U. Open system tribology and influence of weather condition[J]. Scientific Reports, 2016, 6: 32455. doi: 10.1038/srep32455
    [4] 王争鸣. 高寒地区高速铁路勘察设计技术创新与实践[J]. 铁道工程学报, 2018, 35(8): 6-10, 31. doi: 10.3969/j.issn.1006-2106.2018.08.002

    WANG Zheng-ming. Technological innovation and practice of investigation and design for high-speed railway in alpine area[J]. Journal of Railway Engineering Society, 2018, 35(8): 6-10, 31. (in Chinese) doi: 10.3969/j.issn.1006-2106.2018.08.002
    [5] 张洪涛, 张雨晨. 高寒地区动车组运营故障原因分析及控制措施[J]. 铁道技术监督, 2019, 47(1): 37-40. doi: 10.3969/j.issn.1006-9178.2019.01.011

    ZHANG Hong-tao, ZHANG Yu-chen. Analysis of operation failure of EMU and control measures in alpine region[J]. Railway Quality Control, 2019, 47(1): 37-40. (in Chinese) doi: 10.3969/j.issn.1006-9178.2019.01.011
    [6] 冯宝锐, 王元清, 石永久. 低温下铁路钢轨钢材断裂韧度KIC的试验研究[J]. 铁道学报, 2008, 30(2): 83-87. doi: 10.3321/j.issn:1001-8360.2008.02.016

    FENG Bao-rui, WANG Yuan-qing, SHI Yong-jiu. Experimental study on fracture toughness KIC of rails steel under low temperature conditions[J]. Journal of the China Railway Society, 2008, 30(2): 83-87. (in Chinese) doi: 10.3321/j.issn:1001-8360.2008.02.016
    [7] SANCHIS I V, FRANCO R I, FERNÃNDEZ P M, et al. Risk of increasing temperature due to climate change on high-speed rail network in Spain[J]. Transportation Research Part D: Transport and Environment, 2020, 82: 102312. doi: 10.1016/j.trd.2020.102312
    [8] 袁艳平, 何青青, 曹晓玲, 等. 铁路隧道热湿环境研究综述[J]. 铁道建筑, 2011(8): 49-52. doi: 10.3969/j.issn.1003-1995.2011.08.016

    YUAN Yan-ping, HE Qing-qing, CAO Xiao-ling, et al. Review on thermal and humid environment of railway tunnel[J]. Railway Engineering, 2011(8): 49-52. (in Chinese) doi: 10.3969/j.issn.1003-1995.2011.08.016
    [9] WALTERS L C. The effect of low temperatures on the fatigue of high-strength structural grade steels[J]. Procedia Materials Science, 2014, 3: 209-214. doi: 10.1016/j.mspro.2014.06.037
    [10] 张玉玲. 低温环境下铁路钢桥疲劳断裂性能研究[J]. 中国铁道科学, 2008, 29(1): 22-25. doi: 10.3321/j.issn:1001-4632.2008.01.005

    ZHANG Yu-ling. Research on the fatigue and fracture performance of railway steel bridge under low temperature[J]. China Railway Science, 2008, 29(1): 22-25. (in Chinese) doi: 10.3321/j.issn:1001-4632.2008.01.005
    [11] MA L, GUO J, LIU Q Y, et al. Fatigue crack growth and damage characteristics of high-speed rail at low ambient temperature[J]. Engineering Failure Analysis, 2017, 82: 802-815. doi: 10.1016/j.engfailanal.2017.07.026
    [12] EKBERG A, KABO E. Fatigue of railway wheels and rails under rolling contact and thermal loading—an overview[J]. Wear, 2005, 258(7): 1288-1300. http://www.sciencedirect.com/science/article/pii/S0043164804002972
    [13] ALIZADEH OTORABAD H, YOUNESIAN D, HOSSEINI TEHRANI P, et al. Modeling temperature evolution of wheel flat during formation[J]. International Journal of Thermal Sciences, 2019, 140: 114-126. doi: 10.1016/j.ijthermalsci.2019.02.040
    [14] LEBEDEV V I, TSAREV V F, MOGIL'NYJ V V, et al. Experience of railroad rail production intended for service at low temperatures[J]. Steel, 1997(12): 26-27. http://www.researchgate.net/publication/298687656_Experience_of_railroad_rail_production_intended_for_service_at_low_temperatures
    [15] PARSHIN V A, REJKHART V A. Increase of low temperature rail service reliability[J]. Steel, 1993(6): 55-58. http://www.researchgate.net/publication/292172699_Increase_of_low_temperature_rail_service_reliability
    [16] YUR'EV A B, GODIK L A, KOZYREV N A, et al. Using Nitrovan alloy in the production of low-temperature rail steel[J]. Steel in Translation, 2008, 38(9): 756-758. doi: 10.3103/S0967091208090131
    [17] FANG Xiu-yang, CAI Zhen-bing, WANG Jun-guo, et al. Evaluation of temperature—sensitive fatigue crack propagation of a high-speed railway wheel rim material[J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(8): 1815-1825. doi: 10.1111/ffe.13021
    [18] FANG Xiu-yang, ZHAO Yong-xiang, LIU Huan-wei. Study on fatigue failure mechanism at various temperatures of a high-speed railway wheel steel[J]. Materials Science and Engineering: A, 2017, 696: 299-314. doi: 10.1016/j.msea.2017.04.042
    [19] WHITE B, LEWIS R. Simulation and understanding the wet-rail phenomenon using twin disc testing[J]. Tribology International, 2019, 136: 475-486. doi: 10.1016/j.triboint.2019.03.067
    [20] 王平, 郭强, 陈嘉胤, 等. 轮轨润滑对高速道岔曲尖轨磨耗的影响研究[J]. 铁道工程学报, 2019, 36(9): 17-22. doi: 10.3969/j.issn.1006-2106.2019.09.004

    WANG Ping, GUO Qiang, CHEN Jia-yin, et al. Research on the effect of wheel-rail lubrication on curved switch rail wear in high-speed turnout[J]. Journal of Railway Engineering Society, 2019, 36(9): 17-22. (in Chinese) doi: 10.3969/j.issn.1006-2106.2019.09.004
    [21] ZHAO X J, GUO J, WANG H Y, et al. Effects of decarburization on the wear resistance and damage mechanisms of rail steels subject to contact fatigue[J]. Wear, 2016, 364/365: 130-143. doi: 10.1016/j.wear.2016.07.013
    [22] LEE C W, KWON S J. Evaluation of surface defects of wheel and rail for Korean high-speed railway[J]. Materials Science Forum, 2010, 654-656: 2499-2502. doi: 10.4028/www.scientific.net/MSF.654-656.2499
    [23] 冯宝锐, 王元清, 石永久, 等. 我国铁路钢轨断裂事故分析及其影响因素[J]. 低温建筑技术, 2005, 1(4): 97-99. doi: 10.3969/j.issn.1001-6864.2005.04.049

    FENG Bao-rui, WANG Yuan-qing, SHI Yong-jiu, et al. Analysis on fracture accidents and its influencing factors for steel tracks in China[J]. Low Temperature Architecture Technology, 2005, 1(4): 97-99. (in Chinese) doi: 10.3969/j.issn.1001-6864.2005.04.049
    [24] 王宇, 曾伟, 韩靖, 等. 氮碳共渗对ER8车轮钢高温摩擦磨损性能的影响[J]. 材料导报, 2020, 34(18): 18119-18124. doi: 10.11896/cldb.19100007

    WANG Yu, ZENG Wei, HAN Jing, et al. Effect of nitrocarburizing on high temperature friction and wear properties of ER8 wheel steel[J]. Materials Reports, 2020, 34(18): 18119-18124. (in Chinese) doi: 10.11896/cldb.19100007
    [25] ZHU Y, LYU Y, OLOFSSON U. Mapping the friction between railway wheels and rails focusing on environmental conditions[J]. Wear, 2015, 324/325: 122-128. doi: 10.1016/j.wear.2014.12.028
    [26] MA L, SHI L B, GUO J, et al. On the wear and damage characteristics of rail material under low temperature environment condition[J]. Wear, 2018, 394/395: 149-158. doi: 10.1016/j.wear.2017.10.011
    [27] CANNON D F, EDEL K O, GRASSIE S L, et al. Rail defects: an overview[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26(10): 865-886. doi: 10.1046/j.1460-2695.2003.00693.x
    [28] SHI L B, MA L, GUO J, et al. Influence of low temperature environment on the adhesion characteristics of wheel-rail contact[J]. Tribology International, 2018, 127: 59-68. doi: 10.1016/j.triboint.2018.05.037
    [29] ZHOU L, WANG W J, HU Y, et al. Study on the wear and damage behaviors of hypereutectoid rail steel in low temperature environment[J]. Wear, 2020, 456/457: 203365. doi: 10.1016/j.wear.2020.203365
    [30] ZHOU L, HU Y, DING H H, et al. Experimental study on the wear and damage of wheel-rail steels under alternating temperature conditions[J]. Wear, 2021, DOI: 10.1016/j.wear.2021.203829.
    [31] 杨琨, 王霞, 王进平, 等. 摩擦磨损试验机极地低温环境的模拟研究[J]. 哈尔滨工业大学学报, 2020, 52(1): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202001015.htm

    YANG Kun, WANG Xia, WANG Jin-ping, et al. Simulation on extreme low temperature environment with friction and wear tester[J]. Journal of Harbin Institute of Technology, 2020, 52(1): 85-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202001015.htm
    [32] 王鸿灵, 阎逢元. 一种高碳钢低温干摩擦行为的研究[J]. 摩擦学学报, 2008, 28(5): 469-474. doi: 10.3321/j.issn:1004-0595.2008.05.016

    WANG Hong-ling, YAN Feng-yuan. Study on tribological behavior of 1.08% C steel under dry friction at low temperature[J]. Tribology, 2008, 28(5): 469-474. (in Chinese) doi: 10.3321/j.issn:1004-0595.2008.05.016
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  346
  • HTML全文浏览量:  176
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回