留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内置磁流变阀对磁流变阻尼器动力性能的影响

胡国良 邓英俊 冯海波 李刚

胡国良, 邓英俊, 冯海波, 李刚. 内置磁流变阀对磁流变阻尼器动力性能的影响[J]. 交通运输工程学报, 2021, 21(3): 289-299. doi: 10.19818/j.cnki.1671-1637.2021.03.021
引用本文: 胡国良, 邓英俊, 冯海波, 李刚. 内置磁流变阀对磁流变阻尼器动力性能的影响[J]. 交通运输工程学报, 2021, 21(3): 289-299. doi: 10.19818/j.cnki.1671-1637.2021.03.021
HU Guo-liang, DENG Ying-jun, FENG Hai-bo, LI Gang. Effect of inner magnetorheological valve on dynamic performance of magnetorheological damper[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 289-299. doi: 10.19818/j.cnki.1671-1637.2021.03.021
Citation: HU Guo-liang, DENG Ying-jun, FENG Hai-bo, LI Gang. Effect of inner magnetorheological valve on dynamic performance of magnetorheological damper[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 289-299. doi: 10.19818/j.cnki.1671-1637.2021.03.021

内置磁流变阀对磁流变阻尼器动力性能的影响

doi: 10.19818/j.cnki.1671-1637.2021.03.021
基金项目: 

国家自然科学基金项目 51765016

江西省重点研发计划项目 20192BBEL50012

详细信息
    作者简介:

    胡国良(1973-),男,江西南昌人,华东交通大学教授,工学博士,从事磁流变智能器件及结构研究

  • 中图分类号: U270.11

Effect of inner magnetorheological valve on dynamic performance of magnetorheological damper

Funds: 

National Natural Science Foundation of China 51765016

Key Research and Development Program of Jiangxi Province 20192BBEL50012

More Information
  • 摘要: 为提高阻尼器在结构尺寸受限时的输出阻尼力,以磁流变阻尼器为对象,研究了内置磁流变阀结构对磁流变阻尼器动力性能的影响;通过改进传统磁流变阻尼器活塞头结构,将磁流变阀内置于阻尼器内,设计了一种内置阀式磁流变阻尼器,阐述了内置阀式磁流变阻尼器的结构与工作原理;对阻尼器的磁路进行了简化,并利用磁路欧姆定律对其进行了磁路分析;根据磁流变阻尼器的工作模式,建立了内置阀式磁流变阻尼器的阻尼力数学模型;利用有限元软件ANSYS对阻尼器的电磁特性进行了仿真分析,得出了不同电流下液流通道内磁感应强度的分布情况;结合阻尼力数学模型,利用MATLAB软件对阻尼器的动力性能进行了仿真分析;为验证阻尼器设计的合理性,搭建试验台对阻尼器的动力性能进行了测试分析,并将试验与仿真结果进行对比。研究结果表明:仿真与试验结果具有较好的一致性;不同外界激励与速度变化对输出阻尼力影响较小,内置阀式磁流变阻尼器能在不同工况下输出稳定的阻尼力;输出阻尼力与阻尼可调系数近乎线性随励磁电流增长;当电流为1.2 A时,输出阻尼力高达7.521 kN,阻尼可调系数可达9.7。可见,内置磁流变阀结构可在受限体积下有效延长阻尼通道长度,使磁流变阻尼器输出较高的阻尼力,且具备较宽的阻尼可调范围。

     

  • 图  1  内置阀式磁流变阻尼器结构

    Figure  1.  Structure of MRD with inner valve

    图  2  内置阀结构原理

    Figure  2.  Principle of inner valve structure

    图  3  简化磁路

    Figure  3.  Simplified magnetic circuit

    图  4  等效磁路

    Figure  4.  Equivalent magnetic circuit

    图  5  液流通道分布

    Figure  5.  Distribution of liquid flow channels

    图  6  内置阀式磁流变阻尼器仿真模型

    Figure  6.  Simulation model of MRD with inner valve

    图  7  磁流变液特性曲线

    Figure  7.  MRF characteristic curve

    图  8  磁力线分布

    Figure  8.  Distribution of magnetic flux lines

    图  9  磁感应强度沿路径的分布

    Figure  9.  Distributions of magnetic flux density along paths

    图  10  平均磁感应强度随电流的变化

    Figure  10.  Variations of average magnetic flux density with current

    图  11  压差随电流的变化

    Figure  11.  Variation of pressure difference with current

    图  12  内置阀式磁流变阻尼器样机

    Figure  12.  Prototype of MRD with inner valve

    图  13  动力性能测试系统

    Figure  13.  Dynamic performance test system

    图  14  不同正弦激励下阻尼力-位移曲线

    Figure  14.  Curves of damping forces and displacements under different sinusoidal excitations

    图  15  不同电流下阻尼力-位移曲线

    Figure  15.  Curves of damping forces and displacements under different currents

    图  16  1.2 A电流时阻尼力-位移曲线

    Figure  16.  Curves of damping force and displacement at 1.2 A current

    图  17  不同电流下阻尼力-速度曲线

    Figure  17.  Curves of damping force and velocity under different currents

    图  18  阻尼器在不同电流下的动力性能

    Figure  18.  Dynamic performances of damper under different currents

    表  1  不同结构形式下的动力性能指标

    Table  1.   Dynamic performance indexes under different structural forms

    结构形式 输出阻尼力/kN 阻尼可调系数
    串联液流通道 6.341 6.4
    内置磁流变阀 7.521 9.7
    下载: 导出CSV
  • [1] JOLLY M R, CARLSON J D, MUOZ B C. A model of the behaviour of magnetorheological materials[J]. Smart Materials and Structures, 1996, 5(5): 607-614. doi: 10.1088/0964-1726/5/5/009
    [2] ZHANG Peng, LEE K H, LEE C H. Friction behavior of magnetorheological fluids with different material types and magnetic field strength[J]. Chinese Journal of Mechanical Engineering, 2016, 29(1): 84-90. doi: 10.3901/CJME.2015.1126.139
    [3] POZNIC A, MILORADOVIC D, JUHAS A. A new magnetorheological brake's combined materials design approach[J]. Journal of Mechanical Science and Technology, 2017, 31(3): 1119-1125. doi: 10.1007/s12206-017-0210-5
    [4] 刘永强, 杨绍普, 廖英英. 一种磁流变阻尼器模型参数识别新方法[J]. 机械工程学报, 2018, 54(6): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201806009.htm

    LIU Yong-qiang, YANG Shao-pu, LIAO Ying-ying. A new method of parameters identification for magnetorheological damper model[J]. Journal of Mechanical Engineering, 2018, 54(6): 62-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201806009.htm
    [5] HU Guo-liang, ZHANG Jia-wei, LIAO Ming-ke, et al. Effect of radial resistance gap on the pressure drop of a compact annular-radial-orifice flow magnetorheological valve[J]. Transaction of Beijing Institute of Technology, 2018(4): 535-546. http://www.cqvip.com/QK/85479X/20184/6100185890.html
    [6] WANG Dao-ming, ZI Bin, ZENG Yi-shan, et al. Simulation and experiment on transient temperature field of a magnetorheological clutch for vehicle application[J]. Smart Materials and Structures, 2017, 26(9): 95020. doi: 10.1088/1361-665X/aa771c
    [7] 胡国良, 刘前结, 李刚, 等. 磁流变阻尼器参数对座椅悬架系统减振效果的影响[J]. 交通运输工程学报, 2018, 18(1): 101-110. doi: 10.3969/j.issn.1671-1637.2018.01.010

    HU Guo-liang, LIU Qian-jie, LI Gang, et al. Influence of parameters of magnetorheological damper on vibration attenuation effect of seat suspension system[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 101-110. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.01.010
    [8] SUN Shuai-shuai, TANG Xin, YANG Jian, et al. A new generation of magnetorheological vehicle suspension system with tunable stiffness and damping characteristics[J]. IEEE Transactions on Industrial Informatics, 2019, 15(8): 4696-4708. doi: 10.1109/TII.2018.2890290
    [9] 李忠继, 戴焕云, 曾京. 基于磁流变阻尼器的铁道车辆模糊半主动控制[J]. 交通运输工程学报, 2014, 14(5): 43-50. doi: 10.3969/j.issn.1671-1637.2014.05.006

    LI Zhong-ji, DAI Huan-yun, ZENG Jing. Fuzzy semi-active control of railway vehicle with magnetorheological damper[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 43-50. (in Chinese) doi: 10.3969/j.issn.1671-1637.2014.05.006
    [10] CHO C H, CHOI S B. Designing requirement of spring and MR damper for new type baby car seat[J]. Applied Mechanics and Materials, 2015, 741: 28-31. doi: 10.4028/www.scientific.net/AMM.741.28
    [11] HU Guo-liang, LIU Qian-jie, DING Ru-qi, et al. Vibration control of semi-active suspension system with magnetorheological damper based on hyperbolic tangent model[J]. Advances in Mechanical Engineering, 2017, 9(5): 1-15. http://www.researchgate.net/publication/316721634_Vibration_control_of_semi-active_suspension_system_with_magnetorheological_damper_based_on_hyperbolic_tangent_model
    [12] 高瞻, 宋爱国, 秦欢欢, 等. 蛇形磁路多片式磁流变液阻尼器设计[J]. 仪器仪表学报, 2017, 38(4): 821-829. doi: 10.3969/j.issn.0254-3087.2017.04.005

    GAO Zhan, SONG Ai-guo, QIN Huan-huan, et al. Design of multi-disc MRF damper with serpentine flux path[J]. Chinese Journal of Scientific Instrument, 2017, 38(4): 821-829. (in Chinese) doi: 10.3969/j.issn.0254-3087.2017.04.005
    [13] KIM B G, YOON D S, KIM G W, et al. Design of a novel magnetorheological damper adaptable to low and high stroke velocity of vehicle suspension system[J]. Applied Sciences, 2020, 10(16): 5586-5602. doi: 10.3390/app10165586
    [14] ZHANG Xin-jie, LI Zhi-hua, GUO Kong-hui, et al. A novel pumping magnetorheological damper: design, optimization, and evaluation[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(17): 2339-2348. doi: 10.1177/1045389X17689937
    [15] YANG Yang, XU Zhao-dong, GUO Ying-qing, et al. Internal magnetic field tests and magnetic field coupling model of a three-coil magnetorheological damper[J]. Journal of Intelligent Material Systems and Structures, 2020, 31(19): 2179-2195. doi: 10.1177/1045389X20943948
    [16] 金京设, 陈照波, 程明, 等. 改进阻尼特性的内置平行双线圈磁流变阻尼器研究[J]. 农业机械学报, 2017, 48(3): 368-375. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201703047.htm

    KIM K, CHEN Zhao-bo, CHENG Ming, et al. Magneto-rheological damper with parallel double coil for improvement of damping performance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 368-375. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201703047.htm
    [17] ZHU Shi-sha, TANG Li-bo, LIU Jin-gang, et al. A novel design of magnetorheological damper with annular radial channel[J]. Shock and Vibration, 2016, 8086504. http://www.researchgate.net/publication/288074003_A_Novel_Design_of_Magnetorheological_Damper_with_Annular_Radial_Channel/download
    [18] KIM K, CHEN Zhao-bo, YU Dong, et al. Design and experiments of a novel magneto-rheological damper featuring bifold flow mode[J]. Smart Materials and Structures, 2016, 25(7): 075004. doi: 10.1088/0964-1726/25/7/075004
    [19] CHENG Ming, CHEN Zhao-bo, XING J W. Design, analysis, and experimental evaluation of a magnetorheological damper with meandering magnetic circuit[J]. IEEE Transactions on Magnetics, 2018, 54(5): 1-10. http://ieeexplore.ieee.org/document/8291015
    [20] HU Guo-liang, LIU Hao, DUAN Jin-fu, et al. Damping performance analysis of magnetorheological damper with serial-type flow channels[J]. Advances in Mechanical Engineering, 2019, 11(1): 1-12. http://www.researchgate.net/publication/330419618_Damping_performance_analysis_of_magnetorheological_damper_with_serial-type_flow_channels/download
    [21] IMADUDDIN F, MAZLAN S A, UBAIDILLA H, et al. Characterization and modeling of a new magnetorheological damper with meandering type valve using neuro-fuzzy[J]. Journal of King Saud University Science, 2017, 29(4): 468-477. doi: 10.1016/j.jksus.2017.08.012
    [22] LIAO Chang-rong, ZHAO Dan-xia, XIE Lei, et al. A design methodology for a magnetorheological fluid damper based on a multi-stage radial flow mode[J]. Smart Materials and Structures, 2012, 21(8): 85-93. http://adsabs.harvard.edu/abs/2012SMaS...21h5005L
    [23] IDRIS M H, IMADUDDIN F, UBAIDILLA H, et al. A concentric design of a bypass magnetorheological fluid damper with a serpentine flux valve[J]. Actuators, 2020, DOI: 10.3390/act9010016.
    [24] MCLAUGHLIN G, HU W, WERELEY N M. Advanced magnetorheological damper with a spiral channel bypass valve[J]. Journal of Applied Physics, 2014, doi: 10.1063/1.4869278.
    [25] HU Guo-liang, ZHANG Jia-wei, ZHONG Fang, et al. Performance evaluation of an improved radial magnetorheological valve and its application in the valve controlled cylinder system[J]. Smart Materials and Structures, 2019, 28(4): 047003. doi: 10.1088/1361-665X/ab0b4f
    [26] HU Guo-liang, YI Feng, TONG Wang, et al. Development and evaluation of a MR damper with enhanced effective gap lengths[J]. IEEE Access, 2020. DOI: 10.1109/ACCESS. 2020. 3019385.
    [27] NGOC D N, THANG L D, LE D H, et al. Development of a new magnetorheological fluid-based brake with multiple coils placed on the side housings[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(5): 734-748. doi: 10.1177/1045389X18818385
    [28] YARALI E, MOHAMMADI A, MAFAKHERI S, et al. Mathematical modeling and experimental evaluation of a prototype double-tube magnetorheological damper[J]. SN Applied Sciences, 2019, 1(11): 1-10. doi: 10.1007/s42452-019-1408-1
    [29] GANESHA A, PATIL S, KUMAR N, et al. Magnetic field enhancement technique in the fluid flow gap of a single coil twin tube magnetorheological damper using magnetic shields[J]. Journal of Mechanical Engineering and Sciences, 2020, 14(2): 6679-6689. doi: 10.15282/jmes.14.2.2020.11.0523
    [30] OLIVIER M, SOHN J W. Design and geometric parameter optimization of hybrid magnetorheological fluid damper[J]. Journal of Mechanical Science and Technology, 2020, 34(7): 2953-2960. doi: 10.1007/s12206-020-0627-0
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  436
  • HTML全文浏览量:  186
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-26
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回