留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速动车组转向架端部悬挂件对构架应力的影响

杨广雪 李爽 张子璠 李秋泽 谌亮

杨广雪, 李爽, 张子璠, 李秋泽, 谌亮. 高速动车组转向架端部悬挂件对构架应力的影响[J]. 交通运输工程学报, 2021, 21(3): 300-310. doi: 10.19818/j.cnki.1671-1637.2021.03.022
引用本文: 杨广雪, 李爽, 张子璠, 李秋泽, 谌亮. 高速动车组转向架端部悬挂件对构架应力的影响[J]. 交通运输工程学报, 2021, 21(3): 300-310. doi: 10.19818/j.cnki.1671-1637.2021.03.022
YANG Guang-xue, LI Shuang, ZHANG Zi-fan, LI Qiu-ze, CHEN Liang. Effects of suspension parts at end of high-speed EMUs bogies on frame stress[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 300-310. doi: 10.19818/j.cnki.1671-1637.2021.03.022
Citation: YANG Guang-xue, LI Shuang, ZHANG Zi-fan, LI Qiu-ze, CHEN Liang. Effects of suspension parts at end of high-speed EMUs bogies on frame stress[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 300-310. doi: 10.19818/j.cnki.1671-1637.2021.03.022

高速动车组转向架端部悬挂件对构架应力的影响

doi: 10.19818/j.cnki.1671-1637.2021.03.022
基金项目: 

国家自然科学基金项目 12072020

详细信息
    作者简介:

    杨广雪(1982-),男,山东泰安人,北京交通大学副教授,工学博士,从事轨道车辆结构可靠性研究

  • 中图分类号: U270.33

Effects of suspension parts at end of high-speed EMUs bogies on frame stress

Funds: 

National Natural Science Foundation of China 12072020

More Information
  • 摘要: 为了探究高速动车组转向架端部悬挂件对构架应力的影响规律,依据UIC 615-4标准,对转向架构架与端部悬挂件进行了有限元仿真,校核了构架疲劳强度;开展了实际运营条件下的跟踪测试试验,分析了不同位置测点应力的时、频域特征,计算了等效损伤;结合模态计算探讨了转向架端部悬挂件对构架侧梁端部应力状态产生较大影响的成因。分析结果表明:依据标准计算的弹簧帽筒区域的疲劳强度满足要求;远离辅助安装座区域的弹簧帽筒测点,实测最大等效损伤为0.01,靠近辅助安装座区域的弹簧帽筒测点,实测最大等效损伤为0.45,明显高于远离辅助安装座区域的测点;对于靠近辅助安装座区域的弹簧帽筒测点中,弹簧帽筒外侧测点即更靠近辅助安装座区域测点的等效损伤均高于内侧测点,二者等效损伤最大相差84.16%;实测数据存在38 Hz的主频,与辅助安装座和构架连接整体的第4阶模态接近,结合实测数据时频分析结果证明,车辆行驶与轨道不平顺波长共同作用产生的激扰,激起了辅助安装座和构架连接整体的第4阶模态,发生P2共振导致弹簧帽筒区域产生过大应力。

     

  • 图  1  转向架构架有限元模型

    Figure  1.  Finite element model of bogie frame

    图  2  辅助安装座有限元模型

    Figure  2.  Finite element model of auxiliary mounting seat

    图  3  辅助安装座和转向架构架整体有限元模型

    Figure  3.  Finite element model of combination of auxiliary mounting seat and bogie frame

    图  4  弹簧帽筒区域应力幅

    Figure  4.  Stress amplitudes of spring cap

    图  5  构架焊接接头的Goodman图及疲劳强度评估

    Figure  5.  Goodman drawing and fatigue strength assessment of frame welded joints

    图  6  构架母材的Goodman图及疲劳强度评估

    Figure  6.  Goodman drawing and fatigue strength assessment of frame base material

    图  7  被试车辆与转向架位置

    Figure  7.  Positions of test vehicle and bogie

    图  8  测点位置

    Figure  8.  Positions of measuring points

    图  9  传感器安装

    Figure  9.  Sensor installation

    图  10  不同线路的弹簧帽筒等效损伤

    Figure  10.  Equivalent damages of spring cap in different lines

    图  11  镟轮前后损伤对比

    Figure  11.  Comparison of damages before and after wheel reprofile

    图  12  不同测点的同一时段应力-时间曲线

    Figure  12.  Stress-time curves of different measuring points at same time period

    图  13  不同测点的幅值谱

    Figure  13.  Amplitude spectrums of different measuring points

    图  14  镟轮前后测点2-D31的应力-时间曲线

    Figure  14.  Stress-time curves of measuring point 2-D31 before and after wheel reprofile

    图  15  镟轮前后测点2-D31的幅值谱

    Figure  15.  Amplitude spectrums of measuring point 2-D31 before and after wheel reprofile

    图  16  区间1列车速度曲线

    Figure  16.  Train speed curve in interval 1

    图  17  区间2列车速度曲线

    Figure  17.  Train speed curve in interval 2

    图  18  区间1测点2-D31时频谱

    Figure  18.  Time-frequency spectrum of measuring point 2-D31 in interval 1

    图  19  区间2测点2-D31时频谱

    Figure  19.  Time-frequency spectrum of measuring point 2-D31 in interval 2

    图  20  构架自由模态振型

    Figure  20.  Free mode vibration shapes of frame

    图  21  辅助安装座约束模态振型

    Figure  21.  Constrained mode vibration shapes of auxiliary mounting seat

    图  22  辅助安装座和转向架整体自由模态振型

    Figure  22.  Free mode vibration shapes of combination of auxiliary mounting seat and bogie frame

    表  1  构架材料机械性能

    Table  1.   Mechanical properties of frame material MPa

    类型 牌号 抗拉强度 屈服强度 疲劳极限
    板材 S355J2W 470 355 130(母材)/85(焊接接头)
    下载: 导出CSV

    表  2  3种不同有限元模型1~6阶模态对应频率

    Table  2.   Frequencies of 1-6 modes of three different finite element models Hz

    阶次 1 2 3 4 5 6
    单独转向架构架 34.98 59.12 74.31 78.22 95.44 106.62
    单独辅助安装座 44.21 50.48 180.82 263.88 326.22 374.85
    构架和安装座整体 26.47 29.56 33.67 40.10 41.56 56.64
    下载: 导出CSV
  • [1] 姚起杭, 姚军. 结构振动疲劳问题的特点与分析方法[J]. 机械科学与技术, 2000, 19(增1): 56-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX2000S1023.htm

    YAO Qi-hang, YAO Jun. The behavior and analysis of structure vibration fatigue[J]. Mechanical Science and Technology, 2000, 19(S1): 56-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX2000S1023.htm
    [2] 林晓斌. 基于功率谱密度信号的疲劳寿命估计[J]. 中国机械工程, 1998, 9(11): 16-19. doi: 10.3321/j.issn:1004-132X.1998.11.005

    LIN Xiao-bin. An engineering approach for the prediction of multiaxial fatigue life[J]. China Mechanical Engineering, 1998, 9(11): 16-19. (in Chinese) doi: 10.3321/j.issn:1004-132X.1998.11.005
    [3] WIRSCHING P H, SHEHATA A M. Fatigue under wide band random stresses using the rain-flow method[J]. Journal of Engineering Materials and Technology, 1977, 99(3): 205-211. doi: 10.1115/1.3443520
    [4] TUNNA J M. Fatigue life prediction for Gaussian random loads at the design stage[J]. Fatigue and Fracture of Engineering Materials and Structures, 1986, 9(3): 169-184. doi: 10.1111/j.1460-2695.1986.tb00444.x
    [5] DIRLIK T. Application of computers in fatigue analysis[D]. Coventry: University of Warwick, 1985.
    [6] ZHAO W, BAKER M J. On the probability density function of rainflow stress range for stationary Gaussian processes[J]. International Journal of Fatigue, 1992, 14(2): 121-135. doi: 10.1016/0142-1123(92)90088-T
    [7] TOVO R. Cycle distribution and fatigue damage under broad-band random loading[J]. International Journal of Fatigue, 2002, 24(11): 1137-1147. doi: 10.1016/S0142-1123(02)00032-4
    [8] BENASCIUTTI D, TOVO R. Spectral methods for lifetime prediction under wide-band stationary random processes[J]. International Journal of Fatigue, 2005, 27(8): 867-877. doi: 10.1016/j.ijfatigue.2004.10.007
    [9] 韩鲁明. 基于CAE技术的某半挂车车架疲劳寿命预估研究[D]. 南京: 南京理工大学, 2007.

    HAN Lu-ming. A prediction approach for fatigue life of a semi-trailer frame based on finite element analysis (FEA) and dynamics multibody system[D]. Nanjing: Nanjing University of Science and Technology, 2007. (in Chinese)
    [10] 石怀龙, 王建斌, 戴焕云, 等. 地铁车辆轴箱吊耳断裂机理和试验研究[J]. 机械工程学报, 2019, 55(6): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201906017.htm

    SHI Huai-long, WANG Jian-bin, DAI Huan-yun, et al. Crack mechanism and field test of the metro safety hanger[J]. Journal of Mechanical Engineering, 2019, 55(6): 122-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201906017.htm
    [11] 连青林, 刘志明, 王文静. 提速客车转向架安全吊座疲劳失效机理与改进方法[J]. 交通运输工程学报, 2018, 18(1): 71-78. doi: 10.3969/j.issn.1671-1637.2018.01.007

    LIAN Qing-lin, LIU Zhi-ming, WANG Wen-jing. Fatigue failure mechanism and improvement method of safety suspender mounting base of speed-up passenger car bogie[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 71-78. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.01.007
    [12] 薛海, 李强. 地铁车辆天线梁振动加速度及动应力试验[J]. 北京交通大学学报, 2015, 39(4): 33-36. doi: 10.3969/j.issn.1672-8106.2015.04.005

    XUE Hai, LI Qiang. Test study on vibration and dynamic stress of subway vehicle's antenna beam[J]. Journal of Beijing Jiaotong University, 2015, 39(4): 33-36. (in Chinese) doi: 10.3969/j.issn.1672-8106.2015.04.005
    [13] 张丽, 任尊松, 孙守光, 等. 考虑齿轮传动影响的高速动车组电机吊架载荷及动应力研究[J]. 机械工程学报, 2016, 52(4): 133-140. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201604019.htm

    ZHANG Li, REN Zun-song, SUN Shou-guang, et al. Research on dynamic load and stress of high-speed EMU motor hanger considering influence of gear transmission system[J]. Journal of Mechanical Engineering, 2016, 52(4): 133-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201604019.htm
    [14] ZHI Peng-peng, XU Yue, CHEN Bing-zhi. Time-dependent reliability analysis of the motor hanger for EMU based on stochastic process[J]. International Journal of Structural Integrity, 2019, 11(3): 453-469. doi: 10.1108/IJSI-07-2019-0075
    [15] LI Fan-song, WU Ping-bo, ZENG Jing, et al. Vibration fatigue dynamic stress simulation under multi-load input condition: application to metro lifeguard[J]. Engineering Failure Analysis, 2019, 99(1): 141-152.
    [16] 沈彩瑜. 铁道车辆转向架构架疲劳强度研究[D]. 成都: 西南交通大学, 2014.

    SHEN Cai-yu. Fatigue strength analysis of the welded bogie frame for railway vehicle[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
    [17] 赵永翔, 杨冰, 彭佳纯, 等. 铁道车辆疲劳可靠性设计Goodman-Smith图的绘制与应用[J]. 中国铁道科学, 2005, 26(6): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200506001.htm

    ZHAO Yong-xiang, YANG Bing, PENG Jia-chun, et al. Drawing and application of Goodman-Smith diagram for the design of railway vehicle fatigue reliability[J]. China Railway Science, 2005, 26(6): 8-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200506001.htm
    [18] 张锁怀, 李永春, 孙军帅. 地铁车辆转向架构架有限元强度计算与分析[J]. 机械设计与制造, 2009, 43(1): 45-47. doi: 10.3969/j.issn.1001-3997.2009.01.018

    ZHANG Suo-huai, LI Yong-chun, SUN Jun-shuai. Strength calculation and analysis on the bogie frame of metro trains based on FEM[J]. Machinery Design and Manufacture, 2009, 43(1): 45-47. (in Chinese) doi: 10.3969/j.issn.1001-3997.2009.01.018
    [19] 王斌杰, 孙守光, 李强, 等. 基于载荷谱提升转向架构架疲劳可靠性研究[J]. 铁道学报, 2019, 41(2): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201902004.htm

    WANG Bin-jie, SUN Shou-guang, LI Qiang, et al. Research on the improvement of speed increased passenger car bogie frame reliability based on load spectrum[J]. Journal of the China Railway Society, 2019, 41(2): 23-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201902004.htm
    [20] 咸晓雨. 动应力数据处理及疲劳评估软件系统开发[D]. 北京: 北京交通大学, 2017.

    XIAN Xiao-yu. Systematic development of dynamic stress data processing and fatigue evaluation software[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese)
    [21] 袁熙, 李舜酩. 疲劳寿命预测方法的研究现状与发展[J]. 航空制造技术, 2005, 48(12): 80-84. doi: 10.3969/j.issn.1671-833X.2005.12.016

    YUAN Xi, LI Shun-ming. Research status and development of forecast method of fatigue life[J]. Aeronautical Manufacturing Technology, 2005, 48(12): 80-84. (in Chinese) doi: 10.3969/j.issn.1671-833X.2005.12.016
    [22] 任尊松, 谢基龙. 采用等效载荷预测轴重对货车交叉支撑装置疲劳寿命的影响[J]. 机械工程学报, 2008, 44(3): 16-21. doi: 10.3321/j.issn:0577-6686.2008.03.003

    REN Zun-song, XIE Ji-long. Influence on axle load to the service life of the crossbar set of railway freight car with equivalent load[J]. Journal of Mechanical Engineering, 2008, 44(3): 16-21. (in Chinese) doi: 10.3321/j.issn:0577-6686.2008.03.003
    [23] 郑如军. 长期服役运行条件下动车组转向架构架结构疲劳试验分析[J]. 铁道车辆, 2018, 56(3): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201803004.htm

    ZHENG Ru-jun. Fatigue test and analysis of bogie frame structure of multiple units under long term service operation conditions[J]. Rolling Stock, 2018, 56(3): 14-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201803004.htm
    [24] 张丽, 任尊松, 孙守光, 等. 构架弹性振动对疲劳寿命影响研究[J]. 铁道机车车辆, 2015, 35(2): 115-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201502030.htm

    ZHANG Li, REN Zun-song, SUN Shou-guang, et al. Research on the influence of railway bogie elastic vibration to fatigue life[J]. Railway Locomotive and Car, 2015, 35(2): 115-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201502030.htm
    [25] 韩鹏, 张卫华. 轮对结构弯曲及型面磨耗对高速列车振动性能的影响[J]. 振动与冲击, 2015, 34(5): 207-212. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201505035.htm

    HAN Peng, ZHANG Wei-hua. Influences of structural bending deformation and profile wear of wheelsets on vibration performance of high-speed trains[J]. Journal of Vibration and Shock, 2015, 34(5): 207-212. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201505035.htm
    [26] 王萌. 焊接转向架构架线路载荷的特征与应用研究[D]. 北京: 北京交通大学, 2016.

    WANG Meng. Study on characteristics and applications of on-track load of welded bogie frame[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
    [27] 于洋, 刘丙林, 马桂财, 等. 城市轨道车辆振动损伤分析与研究[J]. 机车电传动, 2019, 48(4): 120-125. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201904029.htm

    YU Yang, LIU Bing-lin, MA Gui-cai, et al. Research on vibration damage of urban rail vehicles[J]. Electric Drive for Locomotives, 2019, 48(4): 120-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201904029.htm
    [28] KASSNER M. Fatigue strength analysis of a welded railway vehicle structure by different methods[J]. International Journal of Fatigue, 2012, 34(1): 103-111. http://www.sciencedirect.com/science/article/pii/S0142112311000375
    [29] 梁君, 赵登峰. 模态分析方法综述[J]. 现代制造工程, 2006, 28(8): 139-141. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY200608048.htm

    LIANG Jun, ZHAO Deng-feng. Summary of the model analysis method[J]. Modern Manufacturing Engineering, 2006, 28(8): 139-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY200608048.htm
    [30] 肖守讷, 李华丽, 阳光武, 等. 轮轨冲击对构架疲劳的影响[J]. 交通运输工程学报, 2008, 8(3): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200803004.htm

    XIAO Shou-ne, LI Hua-li, YANG Guang-wu, et al. Influence of wheel-rail impact on fatigue of bogie frame[J]. Journal of Traffic and Transportation Engineering, 2008, 8(3): 6-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200803004.htm
  • 加载中
图(22) / 表(2)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  134
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-07
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回