留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车动车和拖车转向架区域风雪流特征

蔡路 娄振 李田 张继业

蔡路, 娄振, 李田, 张继业. 高速列车动车和拖车转向架区域风雪流特征[J]. 交通运输工程学报, 2021, 21(3): 311-322. doi: 10.19818/j.cnki.1671-1637.2021.03.023
引用本文: 蔡路, 娄振, 李田, 张继业. 高速列车动车和拖车转向架区域风雪流特征[J]. 交通运输工程学报, 2021, 21(3): 311-322. doi: 10.19818/j.cnki.1671-1637.2021.03.023
CAI Lu, LOU Zhen, LI Tian, ZHANG Ji-ye. Characteristics of wind-snow flow around motor and trailer bogies of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 311-322. doi: 10.19818/j.cnki.1671-1637.2021.03.023
Citation: CAI Lu, LOU Zhen, LI Tian, ZHANG Ji-ye. Characteristics of wind-snow flow around motor and trailer bogies of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 311-322. doi: 10.19818/j.cnki.1671-1637.2021.03.023

高速列车动车和拖车转向架区域风雪流特征

doi: 10.19818/j.cnki.1671-1637.2021.03.023
基金项目: 

国家重点研发计划项目 2016YFB1200403

详细信息
    作者简介:

    蔡路(1987-),男,湖南华容人,西南交通大学工学博士研究生,从事列车空气动力学研究

    张继业(1965-),男,四川夹江人,西南交通大学教授,工学博士

  • 中图分类号: U270.32

Characteristics of wind-snow flow around motor and trailer bogies of high-speed train

Funds: 

National Key Research and Development Program of China 2016YFB1200403

More Information
  • 摘要: 为研究冬季高速列车在积雪轨道运行时动车和拖车转向架区域的雪粒运动特性差异,采用欧拉-拉格朗日气固两相流方法,分别建立了动车和拖车转向架的风雪流计算模型,分析了转向架区域的雪粒运动特征和雪粒与壁面的撞击特性。研究结果表明:动车和拖车转向架区域的气流路径相似,气流主要由轮对后部卷入转向架区域,并绕两轮对旋转,拖车转向架区域回流引起的正压要大于动车转向架区域回流引起的正压;牵引电机通风时,转向架区域前后轮对周围回转气流比不通风时明显增多;牵引电机的排风使动车转向架区域的雪粒逗留时间由不排风时1.10 s增加到1.13 s,不利于雪粒流出转向架区域;雪粒更易进入拖车转向架区域上部空间,在相同时间内拖车转向架捕获的雪粒比动车转向架多42.8%;动车转向架区域除轴箱外,其后部部件捕获的雪粒少于前部部件,拖车转向架区域除轮对外,其后部部件捕获的雪粒多于前部部件;牵引电机出风口处的气流会增加转向架前部区域部件上的撞击雪粒,减少转向架中部区域部件上的撞击雪粒;牵引电机排出的部分气流会形成绕车轮的旋转气流,使转向架底部更多的雪粒卷入转向架区域,导致撞击到前部轴箱和制动部件上的雪粒分别增加了20%和17%;转向架的雪粒入射区域主要分布在受到车底来流直接冲击的部位和受到转向架后部回流冲击的部位。

     

  • 图  1  风-雪流计算域

    Figure  1.  Calculation domain of wind-snow flow

    图  2  转向架几何模型

    Figure  2.  Geometrical models of bogies

    图  3  粒子喷射面位置

    Figure  3.  Position of particles injection plane

    图  4  压力系数对比

    Figure  4.  Comparison of pressure coefficients

    图  5  计算网格

    Figure  5.  Computational grids

    图  6  拖车转向架截面流线和压力分布

    Figure  6.  Streamlines and pressure distributions of sections of trailer bogie

    图  7  动车转向架截面流线和压力分布

    Figure  7.  Streamlines and pressure distributions of sections of motor bogie

    图  8  横向监测线位置

    Figure  8.  Positions of transverse monitoring lines

    图  9  横向监测线垂向速度对比

    Figure  9.  Comparison of vertical velocities on transverse monitoring lines

    图  10  动车转向架周围流线

    Figure  10.  Streamlines around motor bogie

    图  11  转向架区域雪粒运动方向

    Figure  11.  Snow particles' movement directions in bogie region

    图  12  转向架展向位置为-0.2 m截面雪粒浓度分布

    Figure  12.  Snow particles concentration distributions on -0.2 m span direction section of bogie

    图  13  转向架展向位置为0.2 m截面雪粒浓度分布

    Figure  13.  Snow particles concentration distributions on 0.2 m span direction section of bogie

    图  14  转向架区域壁面雪粒撞击数

    Figure  14.  Snow particles impact numbers on walls of bogie region

    图  15  转向架区域壁面雪粒平均入射角度

    Figure  15.  Snow particles average incident angles on walls of bogie regions

    图  16  转向架区域壁面雪粒平均入射速率

    Figure  16.  Snow particles average incident velocity rates on walls of bogie regions

    图  17  动车转向架部件单位面积捕获雪粒数

    Figure  17.  Numbers of snow particles captured by per unit area of motor bogie components

    图  18  拖车转向架部件单位面积捕获雪粒数

    Figure  18.  Numbers of snow particles captured by per unit area of trailer bogie components

    表  1  网格参数

    Table  1.   Grid parameters

    网格类型 缩放因子 边界层数 y+ 体网格数/107
    粗网格 $ \sqrt 2 $ 6 30~400 1.08
    中等网格 1 10 30~300 2.51
    细网格 1/$ \sqrt 2 $ 8 30~200 4.91
    下载: 导出CSV

    表  2  边界条件

    Table  2.   Boundary conditions

    边界区域 边界类型 连续相 离散相
    入口 速度入口 69.4 m·s-1 逃逸
    电机出风口 速度入口 4.0 m·s-1 逃逸
    出口 压力出口 0 逃逸
    侧面、顶面 对称
    轨道、地面 移动壁面 69.4 m·s-1 逃逸
    轮对 转动壁面 152 rad·s-1 反射
    转向架 壁面 无滑移壁面 UDF
    简化车体 壁面 无滑移壁面 UDF
    下载: 导出CSV

    表  3  动车转向架各部件捕获雪粒总数

    Table  3.   Total numbers of captured snow particles by each motor bogie component

    部件 捕获雪粒数
    不通风 通风 通风后增幅/%
    转向架舱 56 152 64 651 15.14
    齿轮箱1 204 728 210 240 2.69
    齿轮箱2 89 645 88 558 -1.21
    电机1 108 223 109 426 1.11
    电机2 26 152 25 936 -0.83
    风道 2 489 1 753 -29.57
    构架 171 687 178 002 3.68
    空气弹簧 964 942 -2.28
    抗蛇行减振器 14 931 16 786 12.42
    轮对1 398 388 399 882 0.38
    轮对2 213 699 207 395 -2.95
    牵引拉杆、横向减振器 1 973 1 594 -19.21
    摇枕、抗侧滚扭杆 2 982 3 182 6.71
    制动1 21 954 25 859 17.79
    制动2 6 119 5 841 -4.54
    轴箱1 278 335 20.50
    轴箱2 18 629 17 692 -5.03
    下载: 导出CSV

    表  4  拖车转向架各部件捕获雪粒总数

    Table  4.   Total numbers of captured snow particles by each trailer bogie component

    部件 捕获雪粒数
    转向架舱 715 667
    构架 243 369
    空气弹簧 632
    抗蛇行减振器 4 881
    牵引拉杆、横向减振器 3 190
    摇枕、抗侧滚扭杆 8 751
    制动1 16 951
    制动2 35 751
    轴箱1 84
    轴箱2 28 559
    轮对1 783 508
    轮对2 339 199
    下载: 导出CSV
  • [1] KAMATA Y, YOKOKURA A. Estimation method of snow accretion amount on train bogies[C]//IWAIS. International Workshop on Atmospheric Icing of Structures. Raykjavík: IWAIS, 2019: 1-4.
    [2] CAI L, LOU Z, LI T, et al. Numerical study on the effects of anti-snow deflector on the wind-snow flow underneath a high-speed train[J]. Journal of Applied Fluid Mechanics, 2021, 14(1): 287-299.
    [3] BETTEZ M. Winter technologies for high speed rail[D]. Trondheim: Norwegian University of Science and Technology, 2011.
    [4] KLOOW L. High-speed train operation in winter climate[R]. Stockholm: KTH Railway Group and Transrail, 2011.
    [5] GAO Guang-jun, ZHANG Yan, XIE Fei, et al. Numerical study on the anti-snow performance of deflectors in the bogie region of a high-speed train using the discrete phase model[J]. Journal of Rail and Rapid Transit, 2019, 233(2): 141-159. doi: 10.1177/0954409718785290
    [6] 蔡路, 张继业, 李田, 等. 高速列车底部空气流动特性对转向架区域积雪的影响[J]. 交通运输工程学报, 2019, 19(3): 109-121. doi: 10.3969/j.issn.1671-1637.2019.03.012

    CAI Lu, ZHANG Ji-ye, LI Tian, et al. Impact of air flow characteristics underneath carbody on snow accumulation on bogie region of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 109-121. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.03.012
    [7] PREMOLI A, ROCCHI D, SCHITO P, et al. Ballast flight under high-speed trains: wind tunnel full-scale experimental tests[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145: 351-361. doi: 10.1016/j.jweia.2015.03.015
    [8] ZHU J Y, HU Z W. Flow between the train underbody and trackbed around the bogie area and its impact on ballast flight[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 166: 20-28. doi: 10.1016/j.jweia.2017.03.009
    [9] PAZ C, SUÁREZ E, GIL C. Numerical methodology for evaluating the effect of sleepers in the underbody flow of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 167: 140-147 doi: 10.1016/j.jweia.2017.04.017
    [10] PAZ C, SUÁREZ E, GIL C, et al. Effect of realistic ballasted track in the underbody flow of a high-speed train via CFD simulations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184: 1-9. doi: 10.1016/j.jweia.2018.11.007
    [11] 韩运动, 姚松, 陈大伟, 等. 高速列车转向架舱内流场实车测试和数值模拟[J]. 交通运输工程学报, 2015, 15(6): 51-60. doi: 10.3969/j.issn.1671-1637.2015.06.007

    HAN Yun-dong, YAO Song, CHEN Da-wei, et al. Real vehicle test and numerical simulation of flow field in high-speed train bogie cabin[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 51-60. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.06.007
    [12] 李田, 戴志远, 刘加利, 等. 中国高速列车气动减阻优化综述[J]. 交通运输工程学报, 2021, 21(1): 59-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101006.htm

    LI Tian, DAI Zhi-yuan, LIU Jia-li, et al. Review on aerodynamic drag reduction optimization of high-speed trains in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 59-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101006.htm
    [13] SOPER D, FLYNN D, BAKER C, et al. A comparative study of methods to simulate aerodynamic flow beneath a high-speed train[J]. Journal of Rail and Rapid Transit, 2018, 232(5): 1464-1482. doi: 10.1177/0954409717734090
    [14] SHISHIDO M, NAKADE K, IDO A. Development of deflector to decrease snow-accretion to truck of a vehicle[J]. RTRI Report, 2009, 23(3): 29-34. (in Japanese) http://www.rtri.or.jp/eng/publish/rtrirep/2009/abst/rep03_papers5.pdf
    [15] WANG Jia-bin, GAO Guang-jun, ZHANG Yan, et al. Anti-snow performance of snow shields designed for brake calipers of a high-speed train[J]. Journal of Rail and Rapid Transit, 2019, 233(2): 121-140. doi: 10.1177/0954409718783327
    [16] WANG Jia-bin, ZHANG Jie, XIE Fei, et al. A study of snow accumulating on the bogie and the effects of deflectors on the de-icing performance in the bogie region of a high-speed train[J]. Cold Regions Science and Technology, 2018, 148: 121-130. doi: 10.1016/j.coldregions.2018.01.010
    [17] WANG Jia-bin, ZHANG Jie, ZHANG Yan, et al. Impact of bogie cavity shapes and operational environment on snow accumulating on the bogies of high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176: 211-224. doi: 10.1016/j.jweia.2018.03.027
    [18] PARADOT N, ALLAIN E, CROUÉ R, et al. Development of a numerical modeling of snow accumulation on a high speed train[C]//CCP. The Second International Conference on Railway Technology: Research, Development and Maintenance. Stirlingshire: CCP, 2014: 1-17.
    [19] 丁叁叁, 田爱琴, 董天韵, 等. 端面下斜导流板对高速列车转向架防积雪性能的影响[J]. 中南大学学报(自然科学版), 2016, 47(4): 1400-1405. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201604041.htm

    DING San-san, TIAN Ai-qin, DONG Tian-yun, et al. Influence of inclined guiding plate on anti-snow performance of high-speed train bogie[J]. Journal of Central South University (Science and Technology), 2016, 47(4): 1400-1405. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201604041.htm
    [20] TOMINAGA Y. Computational fluid dynamics simulation of snowdrift around buildings: past achievements and future perspectives[J]. Cold Regions Science and Technology, 2018, 150: 2-14. doi: 10.1016/j.coldregions.2017.05.004
    [21] PANKAJAKSHAN R, MITCHELL B J, TAYLOR L K. Simulation of unsteady two-phase flows using a parallel Eulerian-Lagrangian approach[J]. Computers and Fluids, 2011, 41(1): 20-26. doi: 10.1016/j.compfluid.2010.09.020
    [22] CAI Lu, LOU Zhen, LIU Nan, et al. Numerical investigation of the deposition characteristics of snow on the bogie of a high-speed train[J]. Fluid Dynamics and Materials Processing, 2020, 16(1): 41-53. doi: 10.32604/fdmp.2020.07731
    [23] 蔡路, 李田, 张继业. 高速列车转向架雪粒沉积特性数值研究[J]. 浙江大学学报(工学版), 2020, 54(4): 804-815. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202004021.htm

    CAI Lu, LI Tian, ZHANG Ji-ye. Numerical study on deposition characteristics of snow particle on bogie of high-speed train[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 804-815. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202004021.htm
    [24] 蔡路, 张继业, 李田. 高速列车转向架区域雪粒运动特性分析[J]. 中国科学: 技术科学, 2019, 49(12): 1593-1602. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201912018.htm

    CAI Lu, ZHANG Ji-ye, LI Tian. Analysis of the motion characteristics of snow particle in the bogie region of a high-speed train[J]. Scientia Sinica Technologica, 2019, 49(12): 1593-1602. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201912018.htm
    [25] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computers and Fluids, 1995, 24(3): 227-238. doi: 10.1016/0045-7930(94)00032-T
    [26] MORSI S A, ALEXANDER A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2): 193-208. doi: 10.1017/S0022112072001806
    [27] ABRAHAMSSON P, ENG M, RASMUSON A. An infield study of road snow properties related to snow-car adhesion and snow smoke[J]. Cold Regions Science and Technology, 2018, 145: 32-39. doi: 10.1016/j.coldregions.2017.09.008
    [28] CLIFTON A, LEHNING M. Improvement and validation of a snow saltation model using wind tunnel measurements[J]. Earth Surface Processes and Landforms, 2008, 33(14): 2156-2173. doi: 10.1002/esp.1673/pdf
    [29] GOSMAN A D, LOANNIDES E. Aspects of computer simulation of liquid-fueled combustors[J]. Journal of Energy, 1983, 7(6): 482-490. doi: 10.2514/3.62687
    [30] ZWAAFTINK C D G, DIEBOLD M, HORENDER S, et al. Modelling small-scale drifting snow with a Lagrangian stochastic model based on large-eddy simulations[J]. Boundary-Layer Meteorology, 2014, 153(1): 117-139. doi: 10.1007/s10546-014-9934-2
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  76
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-19
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回