留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SAP内养生水泥混凝土综述

申爱琴 杨景玉 郭寅川 覃潇 李鹏

申爱琴, 杨景玉, 郭寅川, 覃潇, 李鹏. SAP内养生水泥混凝土综述[J]. 交通运输工程学报, 2021, 21(4): 1-31. doi: 10.19818/j.cnki.1671-1637.2021.04.001
引用本文: 申爱琴, 杨景玉, 郭寅川, 覃潇, 李鹏. SAP内养生水泥混凝土综述[J]. 交通运输工程学报, 2021, 21(4): 1-31. doi: 10.19818/j.cnki.1671-1637.2021.04.001
SHEN Ai-qin, YANG Jing-yu, GUO Yin-chuan, QIN Xiao, LI Peng. Review on cement concrete internally cured by SAP[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 1-31. doi: 10.19818/j.cnki.1671-1637.2021.04.001
Citation: SHEN Ai-qin, YANG Jing-yu, GUO Yin-chuan, QIN Xiao, LI Peng. Review on cement concrete internally cured by SAP[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 1-31. doi: 10.19818/j.cnki.1671-1637.2021.04.001

SAP内养生水泥混凝土综述

doi: 10.19818/j.cnki.1671-1637.2021.04.001
基金项目: 

国家自然科学基金项目 51778061

陕西省自然科学基础研究项目 2020JZ-22

长安大学博士研究生创新能力培养项目 300203211214

详细信息
    作者简介:

    申爱琴(1957-),女,陕西凤县人,长安大学教授,工学博士,从事路基路面研究

    通讯作者:

    杨景玉(1994-),男,河南宝丰人,长安大学工学博士研究生

  • 中图分类号: U414

Review on cement concrete internally cured by SAP

Funds: 

National Natural Science Foundation of China 51778061

Natural Science Basic Research Program of Shaanxi 2020JZ-22

Innovation Ability Training Program for Doctoral Students in Chang'an University 300203211214

More Information
  • 摘要: 分析了超吸水性聚合物(SAP)的材料性能和SAP内养生混凝土配合比设计的关键参数,提出了内养生混凝土组成设计方法;从SAP吸释水行为和内养生混凝土水化特征角度,探讨了SAP内养生混凝土水分传输机制,综述了SAP内养生混凝土的收缩阻裂性能、力学性能和耐久性能;通过界面过渡区特征、水化产物和孔结构特征,探究了SAP内养生混凝土性能增强机理;总结了SAP内养生混凝土国内外工程应用情况,并展望了其未来的研究方向和应用前景。分析结果表明:SAP内养生原理为其本身的吸释水特性,但因SAP性能的差异和混凝土配合比等因素的不同,内养生水泥混凝土的各项性能有一定的差异性;SAP在渗透压和离子浓度的驱动下及时释水,补充混凝土内部水分丧失,降低早期水化热,并提升后期水化程度;SAP内养生混凝土的各项性能均受到其粒径、掺量和额外引水量的影响,在各参数均合适的条件下,SAP能够有效抑制混凝土的自收缩和干燥收缩,并增强混凝土的力学性能;SAP能够促进水化反应,生成更多的水化产物,填充混凝土的孔隙,增强混凝土的密实性,细化孔结构,切断连通孔隙,从而改善混凝土的抗冻、抗渗等耐久性能;SAP的再溶胀能力可阻塞混凝土裂缝,生成的CaCO3等水化产物可使混凝土裂缝自愈合;SAP内养生作用能够增强水泥石与集料之间的黏结性,减少甚至消除界面过渡区微裂缝,提高界面过渡区强度;SAP内养生水泥混凝土在桥梁桥面整体化层、横隔梁、湿接缝、桥墩及隧道二次衬砌等部位已成功应用,抗裂效果优良。

     

  • 图  1  SAP吸水倍率

    Figure  1.  Water absorption multiplicities of SAP

    图  2  SAP在模拟水泥浆液中的吸水倍率和吸水速率

    Figure  2.  Water absorption multiplicities and rates of SAP in simulated cement slurry solutions

    图  3  温度对SAP吸水倍率和速率的影响

    Figure  3.  Influences of temperature on water absorption multiplicity and rate for SAP

    图  4  SAP在不同水胶比浆体中的保水率

    Figure  4.  Water retention rates of SAP in different water-binder ratio slurries

    图  5  温度和湿度对SAP释水半径的影响

    Figure  5.  Influences of temperature and humidity on SAP water release radius

    图  6  不同温度下水泥基材料的黏度, 屈服应力与坍落度

    Figure  6.  Viscosities, yield stresses and slumps of cementitious materials at different temperatures

    图  7  SAP粒径、掺量和额外引水方式对混凝土坍落度的影响

    Figure  7.  Influences of SAP particle size, content and additional water diversion method on concrete slump

    图  8  SAP离子网络

    Figure  8.  Ion network of SAP

    图  9  SAP内养生水影响区域

    Figure  9.  Influence area of SAP internally curing water

    图  10  水泥浆体NMR弛豫

    Figure  10.  NMR relaxations of cement slurries

    图  11  路面板湿度发展曲线

    Figure  11.  Humidity development curves of pavement slabs

    图  12  SAP内养生混凝土的电阻率变化

    Figure  12.  Resistivity variations of SAP internally curing concrete

    图  13  混凝土水化放热速率与放热量

    Figure  13.  Hydration heat release rates and heat release quantities ofconcretes

    图  14  XRD结果

    Figure  14.  XRDresults

    图  15  混凝土自收缩变形

    Figure  15.  Autogenous shrinkage deformations of concretes

    图  16  混凝土干燥收缩变形

    Figure  16.  Drying shrinkage formations of concretes

    图  17  缩尺路面板干燥收缩应变

    Figure  17.  Shrinkage strains of scale pavement slabs

    图  18  额外引水量对混凝土干燥收缩变形的影响

    Figure  18.  Influence of additional water quantity on drying shrinkage formations of concretes

    图  19  混凝土荷载-位移曲线

    Figure  19.  Load-displacement curves of concretes

    图  20  混凝土开裂应变

    Figure  20.  Cracking strains of concretes

    图  21  SAP释水后形成的有机薄膜

    Figure  21.  Organic films formed after SAP releases water

    图  22  湿环境中SAP重新吸水膨胀

    Figure  22.  SAP re-absorbs water and expands in humid environment

    图  23  潮湿环境中SAP对混凝土裂缝的自愈合效果

    Figure  23.  Self-healing effect of SAP on concrete cracks in humid environment

    图  24  7 d时SAP内养生混凝土的力学强度

    Figure  24.  Mechanical strengths of SAP internal curing concrete at 7 d

    图  25  7 d时SAP内养生混凝土的弹性模量

    Figure  25.  Elasticity modulus of SAP internal curing concrete at 7 d

    图  26  SAP掺量对混凝土抗压强度的影响

    Figure  26.  Influence of SAP content on compressive strength

    图  27  养护湿度和SAP掺量对混凝土抗压强度的影响

    Figure  27.  Influences of curing humidity and SAP content on concrete compressive strength

    图  28  W/B和SAP掺量对水泥砂浆抗压强度和抗折强度的影响

    Figure  28.  Influences of W/B and SAP content on compressive strength and flexural strength of cement mortar

    图  29  (W/B)e对抗压强度的影响

    Figure  29.  Influence of (W/B)e on compressive strength

    图  30  SAP粒径对抗压强度的影响

    Figure  30.  Influence of SAP particle size on the compressive strength

    图  31  混凝土Cl-迁移系数

    Figure  31.  Cl- migration coefficients in concretes

    图  32  W/C、额外引水、SAP掺量和养护时间对Cl- 迁移系数的影响

    Figure  32.  Influences of W/C, additional water diversion, SAP content and curing time on Cl-migration coefficients

    图  33  SAP掺量对混凝土抗冻性能的影响

    Figure  33.  Influence of SAP content on frost resistance of concrete

    图  34  额外引水量对混凝土抗冻性能的影响

    Figure  34.  Influence of additional water diversion on frost resistance of concrete

    图  35  SAP内养生混凝土冻融后断裂性能

    Figure  35.  Fracture properties of SAP internally curing concretes after freeze-thaw

    图  36  SAP内养生混凝土的疲劳性能

    Figure  36.  Fatigue performances of SAP internally curing concretes

    图  37  不同粒径SAP的内养生混凝土裂纹断裂特征

    Figure  37.  Fatigue fracture characteristics of concretes with different SAP particle sizes

    图  38  不同掺量SAP的内养生混凝土裂纹断裂特征

    Figure  38.  Fatigue fracture characteristics of concretes with different SAP contents

    图  39  混凝土界面过渡区微观结构和成分分析

    Figure  39.  Microstructures and composition analysis of interfacial transition zones of concretes

    图  40  水化产物微观结构

    Figure  40.  Microstructures of hydration products

    图  41  混凝土孔隙结构

    Figure  41.  Pore structures of concretes

    图  42  SAP对混凝土孔隙结构的影响

    Figure  42.  Influence of SAP on pore structures of concretes

    图  43  不同粒径SAP残留孔隙

    Figure  43.  Residual pores of SAP in different particle sizes

    图  44  SAP孔隙EDS扫描

    Figure  44.  EDS scanning of SAP pores

    图  45  广东省SAP内养生混凝土工程

    Figure  45.  Projects of SAP internally curing concrete in Guangdong Province

    图  46  广西崇左高速SAP内养生混凝土工程

    Figure  46.  Projects of SAP internally curing concrete in Guangxi Chongzuo Expressway

  • [1] SHEN Ai-qin, LIN Sen-lin, GUO Yin-chuan, et al. Relationship between flexural strength and pore structure of pavement concrete under fatigue loads and Freeze-thaw interaction in seasonal frozen regions[J]. Construction and Building Materials, 2018, 174: 684-692. doi: 10.1016/j.conbuildmat.2018.04.165
    [2] GUO Yin-chuan, CHEN Zhi-hui, QIN Xiao, et al. Evolution mechanism of microscopic pores in pavement concrete under multi-field coupling[J]. Construction and Building Materials, 2018, 173: 381-393. doi: 10.1016/j.conbuildmat.2018.04.022
    [3] LI Zhen, DING Si-qi, YU Xun, et al. Multifunctional cementitious composites modified with nano titanium dioxide: a review[J]. Composites Part A: Applied Science and Manufacturing, 2018, 111: 115-137. doi: 10.1016/j.compositesa.2018.05.019
    [4] WANG Ke-jin, JANSEN D C, SHAH S P, et al. Permeability study of cracked concrete[J]. Cement and Concrete Research, 1997, 27(3): 381-393. doi: 10.1016/S0008-8846(97)00031-8
    [5] LAWRENCE P, CYR M, RINGOT E. Mineral admixtures in mortars: effect of inert materials on short-term hydration[J]. Cement and Concrete Research, 2003, 33(12): 1939-1947. doi: 10.1016/S0008-8846(03)00183-2
    [6] BENTZ D P, WEISS W J. Internal curing: a 2010 state-of-the-art review[R]. Washington DC: NIST, 2011.
    [7] 马先伟, 张家科, 刘剑辉. 高性能水泥基材料内养护剂用高吸水树脂的研究进展[J]. 硅酸盐学报, 2015, 43(8): 1099-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201508015.htm

    MA Xian-wei, ZHANG Jia-ke, LIU Jian-hui. Review on superabsorbent polymer as internal curing agent of high performance cement-based material[J]. Journal of the Chinese Ceramic Society, 2015, 43(8): 1099-1110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201508015.htm
    [8] SHEN De-jian, SHI Hua-feng, TANG Xiao-jian, et al. Effect of internal curing with super absorbent polymers on residual stress development and stress relaxation in restrained concrete ring specimens[J]. Construction and Building Materials, 2016, 120: 309-320. doi: 10.1016/j.conbuildmat.2016.05.048
    [9] 魏亚, 郑小波, 郭为强. 干燥环境下内养护混凝土收缩、强度及开裂性能[J]. 建筑材料学报, 2016, 19(5): 902-908. doi: 10.3969/j.issn.1007-9629.2016.05.020

    WEI Ya, ZHENG Xiao-bo, GUO Wei-qiang. Shrinkage, strength development and cracking of internally cured concrete exposed to dry conditions[J]. Journal of Building Materials, 2016, 19(5): 902-908. (in Chinese) doi: 10.3969/j.issn.1007-9629.2016.05.020
    [10] ZOHURIAAN-MEHR M J, OMIDIAN H, DOROUDIANI S, et al. Advances in non-hygienic applications of superabsorbent hydrogel materials[J]. Journal of Materials Science, 2010, 45(21): 5711-5735. doi: 10.1007/s10853-010-4780-1
    [11] MIGNON A, SNOECK D, D'HALLUIN K, et al. Alginate biopolymers: counteracting the impact of superabsorbent polymers on mortar strength[J]. Construction and Building Materials, 2016, 110: 169-174. doi: 10.1016/j.conbuildmat.2016.02.033
    [12] 陈雪萍, 翁志学, 黄志明. 高吸水性树脂的结构与吸水机理[J]. 化工新型材料, 2002, 30(3): 19-21. doi: 10.3969/j.issn.1006-3536.2002.03.005

    CHEN Xue-ping, WENG Zhi-xue, HUANG Zhi-ming. Structure and water absorbing mechanisms of superabsorbent resin[J]. New Chemical Materials, 2002, 30(3): 19-21. (in Chinese) doi: 10.3969/j.issn.1006-3536.2002.03.005
    [13] 刘新容. 丙烯酸-丙烯酞胺高吸水性树脂溶液共聚合成与吸液吸附性能研究[D]. 湘潭: 湘潭大学, 2006.

    LIU Xin-rong. Absorbency and adsorption of poly (acrylate-co-acrylamide) by solution polymerization[D]. Xiangtan: Xiangtan University, 2006. (in Chinese)
    [14] 朱长华, 李享涛, 王保江, 等. 内养护对混凝土抗裂性及水化的影响[J]. 建筑材料学报, 2013, 16(2): 221-225. doi: 10.3969/j.issn.1007-9629.2013.02.007

    ZHU Chang-hua, LI Xiang-tao, WANG Bao-jiang, et al. Influence of internal curing on crack resistance and hydration of concrete[J]. Journal of Building Materials, 2013, 16(2): 221-225. (in Chinese) doi: 10.3969/j.issn.1007-9629.2013.02.007
    [15] JUSTS J, WYRZYKOWSKI M, BAJARE D, et al. Internal curing by superabsorbent polymers in ultra-high performance concrete[J]. Cement and Concrete Research, 2015, 76: 82-90. doi: 10.1016/j.cemconres.2015.05.005
    [16] HASHOLT M T, JENSEN O M, KOVLER K, et al. Can superabsorbent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength?[J]. Construction and Building Materials, 2012, 31: 226-230. doi: 10.1016/j.conbuildmat.2011.12.062
    [17] PAIVA H, ESTEVES L P, CACHIM P B, et al. Rheology and hardened properties of single-coat render mortars with different types of water retaining agents[J]. Construction and Building Materials, 2009, 23: 1141-1146. doi: 10.1016/j.conbuildmat.2008.06.001
    [18] WEHBE Y, GHAHREMANINEZHAD A. Combined effect of shrinkage reducing admixtures (SRA) and superabsorbent polymers (SAP) on the autogenous shrinkage, hydration and properties of cementitious materials[J]. Construction and Building Materials, 2017, 138: 151-162. doi: 10.1016/j.conbuildmat.2016.12.206
    [19] SONG C, CHOI Y C, CHOI S. Effect of internal curing by superabsorbent polymers-internal relative humidity and autogenous shrinkage of alkali-activated slag mortars[J]. Construction and Building Materials, 2016, 123: 198-206. doi: 10.1016/j.conbuildmat.2016.07.007
    [20] SOLIMAN A M, NEHDI M L. Effect of partially hydrated cementitious materials and superabsorbent polymer on early-age shrinkage of UHPC[J]. Construction and Building Materials, 2013, 41: 270-275. doi: 10.1016/j.conbuildmat.2012.12.008
    [21] KANG S H, HONG S G, MOON J. The effect of superabsorbent polymer on various scale of pore structure in ultra-high performance concrete[J]. Construction and Building Materials, 2018, 172: 29-40. doi: 10.1016/j.conbuildmat.2018.03.193
    [22] SCHRÖFL C, MECHTCHERINE V, GORGES M. Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage[J]. Cement and Concrete Research, 2012, 42(6): 865-873. doi: 10.1016/j.cemconres.2012.03.011
    [23] YANG Jin, WANG Fa-zhou, LIU Zhi-chao, et al. Early-state water migration characteristics of superabsorbent polymers in cement pastes[J]. Cement and Concrete Research, 2019, 118: 25-37. doi: 10.1016/j.cemconres.2019.02.010
    [24] JUSTS J, WYRZYKOWSKI M, WINNEFELD F, et al. Influence of superabsorbent polymers on hydration of cement pastes with low water-to-binder ratio-a calorimetry study[J]. Journal of Thermal Analysis and Calorimetry, 2014, 115: 425-432. doi: 10.1007/s10973-013-3359-x
    [25] 张珍林. 高吸水性树脂对高强混凝土早期减缩效果及机理研究[D]. 北京: 清华大学, 2013.

    ZHANG Zhen-lin. Investigation on the shrinkage-reducing effect of super-absorbent polymer in high-strength concrete and its mechanism[D]. Beijing: Tsinghua University, 2013. (in Chinese)
    [26] 孔祥明, 张珍林. 高吸水性树脂对高强混凝土浆体孔结构的影响[J]. 硅酸盐学报, 2013, 41(11): 1474-1480. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201311003.htm

    KONG Xiang-ming, ZHANG Zhen-lin. Effect of super-absorbent polymer on pore structure of hardened cement paste in high-strength concrete[J]. Journal of the Chinese Ceramic Society, 2013, 41(11): 1474-1480. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201311003.htm
    [27] 孔祥明, 张珍林. 高吸水树脂对高强混凝土早期减缩效果及机理研究[J]. 建筑材料学报, 2014, 17(4): 559-565, 571. doi: 10.3969/j.issn.1007-9629.2014.04.001

    KONG Xiang-ming, ZHANG Zhen-lin. Investigation on the shrinkage-reducing effect of super-absorbent polymer in high-strength concrete and its mechanism[J]. Journal of Building Materials, 2014, 17(4): 559-565, 571. (in Chinese) doi: 10.3969/j.issn.1007-9629.2014.04.001
    [28] RIYAZI S, KEVERN J T, MULHERON M. Super absorbent polymers (SAPs) as physical air entrainment in cement mortars[J]. Construction and Building Materials, 2017, 147: 669-676. doi: 10.1016/j.conbuildmat.2017.05.001
    [29] LAUSTSEN S, HASHOLT M T, JENSEN O M. Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete[J]. Materials and Structures, 2015, 48: 357-368. doi: 10.1617/s11527-013-0188-0
    [30] 钟佩华. 高吸水性树脂(SAP)对高强混凝土自收缩性能的影响及作用机理[D]. 重庆: 重庆大学, 2015.

    ZHONG Pei-hua. Study on the autogenous shrinkage and mechanism of high strength concrete with super absorbent polymer[D]. Chongqing: Chongqing University, 2015. (in Chinese)
    [31] SNOECK D, SCHAUBROECK D, DUBRUEL P, et al. Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50[J]. Construction and Building Materials, 2014, 72: 148-157. doi: 10.1016/j.conbuildmat.2014.09.012
    [32] 林真, 彭少贤, 赵西坡, 等. 多孔高吸水性树脂制备方法及应用研究进展[J]. 化工新型材料, 2013, 41(2): 160-162. doi: 10.3969/j.issn.1006-3536.2013.02.055

    LIN Zhen, PENG Shao-xian, ZHAO Xi-po, et al. Research progress on forming method and application of porous superabsorbent resin[J]. New Chemical Materials, 2013, 41(2): 160-162. (in Chinese) doi: 10.3969/j.issn.1006-3536.2013.02.055
    [33] 赵林, 蔡雅红, 何荷苗, 等. 高吸水性树脂的制备工艺及应用研究进展[J]. 工程塑料应用, 2018, 46(8): 143-148. doi: 10.3969/j.issn.1001-3539.2018.08.026

    ZHAO Lin, CAI Ya-hong, HE He-miao, et al. Research progress on preparation method and application of super absorbent resins[J]. Engineering Plastics Application, 2018, 46(8): 143-148. (in Chinese) doi: 10.3969/j.issn.1001-3539.2018.08.026
    [34] 贺龙强, 胡鹏, 刘中阳. 耐盐性淀粉接枝丙烯酸类高吸水性树脂的制备及表征[J]. 化工新型材料, 2015, 43(8): 96-98. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201508034.htm

    HE Long-qiang, HU Peng, LIU Zhong-yang. Preparation and characterization of salt-resistance super absorbent resin by graft copolymerization of starch and acrylic acid series[J]. New Chemical Materials, 2015, 43(8): 96-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201508034.htm
    [35] 郭军, 吴小说, 刘廷国, 等. 均相条件下的水稻秸秆-丙烯酸-丙烯酰胺三元共聚物的性能研究[J]. 化工新型材料, 2018, 46(9): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201809031.htm

    GUO Jun, WU Xiao-shuo, LIU Ting-guo, et al. Preparation of super water absorption resin using acrylic acid grafted onto rice straw by irradiation[J]. New Chemical Materials, 2018, 46(9): 125-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201809031.htm
    [36] 严小妹. 聚丙烯酸类高吸水性树脂的合成研究[D]. 广州: 华南理工大学, 2013.

    YAN Xiao-mei. Study on the synthesis of super absorbent polymers based on polyacrylic acid[D]. Guangzhou: South China University of Technology, 2013. (in Chinese)
    [37] 石亮, 张晓梅, 陈超越, 等. 微波辐射交联羧甲基纤维素接枝丙烯酰胺制备高吸水性树脂及溶胀性能[J]. 化工新型材料, 2016, 44(9): 208-210. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201609072.htm

    SHI Liang, ZHANG Xiao-mei, CHEN Chao-yue, et al. Preparation and swelling property of crosslinked carboxymethyl cellulose grafted AM superabsorbent resin by microwave irradiation[J]. New Chemical Materials, 2016, 44(9): 208-210. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201609072.htm
    [38] 杨帆. 聚乙烯醇/丙烯酸/丙烯酰胺高吸水树脂的制备及性能研究[D]. 秦皇岛: 燕山大学, 2015.

    YANG Fan. Synthesis and properties of superabsorbent resin of polyvinyl alcohol/acrylicacid/acrylamide[D]. Qinhuangdao: Yanshan University, 2015. (in Chinese)
    [39] 胡灯. 改性聚天冬氨酸/聚丙烯酸/凹凸棒土复合吸水性树脂的制备及性能研究[D]. 太原: 太原理工大学, 2016.

    HU Deng. Preparation and characterization of modified poly (aspartic acid)/poly (acrylic acid)/attapulgite composite absorbent resin[D]. Taiyuan: Taiyuan University of Technology, 2016. (in Chinese)
    [40] BAKER J P, BLANCH H W, PRAUSNITZ J M. Swelling properties of acrylamide-based ampholytic hydrogels: comparison of experiment with theory[J]. Polymer, 1995, 36(5): 1061-1069. doi: 10.1016/0032-3861(95)93608-O
    [41] 林润雄, 姜斌, 黄毓礼. 高吸水性树脂吸水机理的探讨[J]. 北京化工大学学报(自然科学版), 1998(3): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHY803.003.htm

    LIN Run-xiong, JIANG Bin, HUANG Yu-li. Study on water absorbing mechanism of absorbent resin[J]. Journal of Beijing University of Chemical Technology, 1998(3): 22-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHY803.003.htm
    [42] 马斐, 程冬炳, 王颖, 等. 聚丙烯酸类高吸水性树脂的合成及吸水机理研究进展[J]. 武汉工程大学学报, 2011, 33(1): 4-9, 14. doi: 10.3969/j.issn.1674-2869.2011.01.002

    MA Fei, CHENG Dong-bing, WANG Ying, et al. Research trend on reaction principle and water absorption mechanism of polyacrylic acid superabsorbent polymers[J]. Journal of Wuhan Institute of Technology, 2011, 33(1): 4-9, 14. (in Chinese) doi: 10.3969/j.issn.1674-2869.2011.01.002
    [43] 叶华, 赵建青, 张宇. 吸水树脂水泥基材料自养护外加剂的研究[J]. 华南理工大学(自然科学版), 2003, 31(11): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG200311009.htm

    YE Hua, ZHAO Jian-qing, ZHANG Yu. Superabsorbent polymer as self-curing admixture in cement-based materials[J]. Journal of South China University of Technology (Natural Science), 2003, 31(11): 41-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG200311009.htm
    [44] 杨瑞成, 杨娟, 穆元春, 等. 聚丙烯酸高吸水性聚合物的制备与性能[J]. 兰州理工大学学报, 2008, 34(5): 24-27. doi: 10.3969/j.issn.1673-5196.2008.05.006

    YANG Rui-cheng, YANG Juan, MU Yuan-chun, et al. Preparation and performance of polyacrylic super-absorbent polymer[J]. Journal of Lanzhou University of Technology, 2008, 34(5): 24-27. (in Chinese) doi: 10.3969/j.issn.1673-5196.2008.05.006
    [45] KONG Xiang-ming, ZHANG Zhen-lin, LU Zi-chen. Effect of pre-soaked superabsorbent polymer on shrinkage of high-strength concrete[J]. Materials and Structures, 2015, 48(9): 2741-2758. doi: 10.1617/s11527-014-0351-2
    [46] 何文慧. 内养护水泥基材料的力学及变形性能[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    HE Wen-hui. Mechanics and deformation performances of internal curing cement-based materials[D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese)
    [47] 王文彬, 郭飞, 李磊, 等. 高吸水树脂内养护对水泥基材料性能的影响[J]. 混凝土, 2014(10): 86-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201410026.htm

    WANG Wen-bin, GUO Fei, LI Lei, et al. Effects of internal curing by superabsorbent polymers on performance of cement based materials[J]. Concrete, 2014(10): 86-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201410026.htm
    [48] 李明, 刘加平, 田倩, 等. 内养护水泥基材料早龄期变形行为[J]. 硅酸盐学报, 2017, 45(11): 1635-1641. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201711012.htm

    LI Ming, LIU Jia-ping, TIAN Qian, et al. Early age deformation of cement-based materials containing internal curing agent[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1635-1641. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201711012.htm
    [49] 詹炳根, 丁以兵. 超强吸水剂对混凝土早期内部相对湿度的影响[J]. 合肥工业大学学报(自然科学版), 2006, 29(9): 1151-1154. doi: 10.3969/j.issn.1003-5060.2006.09.022

    ZHAN Bing-gen, DING Yi-bing. Effect of super-absorbent polymers on the internal relative humidity in high performance concrete at early ages[J]. Journal of Hefei University of Technology (Natural Science), 2006, 29(9): 1151-1154. (in Chinese) doi: 10.3969/j.issn.1003-5060.2006.09.022
    [50] 覃潇. SAP内养生路面混凝土水分传输特性及耐久性研究[D]. 西安: 长安大学, 2019.

    QIN Xiao. Research on moisture transmission characteristics and durability of SAP internal curing pavement concrete[D]. Xi'an: Chang'an University, 2019. (in Chinese)
    [51] POWERS T C, BROWNYARD T L. Studies of the physical properties of hardened Portland cement paste[J]. Bulletin, 1947, 43(9): 101-132. http://www.researchgate.net/publication/286149965_Studies_of_the_Physical_Properties_of_Hardened_Portland_Cement_Paste
    [52] HE Zi-ming, SHEN Ai-qin, GUO Yin-chuan, et al. Cement-based materials modified with superabsorbent polymers: a review[J]. Construction and Building Materials, 2019, 225: 569-590. doi: 10.1016/j.conbuildmat.2019.07.139
    [53] 张守祺, 路振宝, 昂源, 等. 高吸水树脂吸液特性对混凝土性能的影响[J]. 硅酸盐学报, 2020, 48(8): 1278-1284. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202008015.htm

    ZHANG Shou-qi, LU Zhen-bao, ANG Yuan, et al. Effect of super-absorbent polymer water absorption characteristics on performance of concrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1278-1284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202008015.htm
    [54] KOVLER K, JENSEN O M. Activities of RILEM technical committee: internal curing of concrete and anticipated research[C]//ACI. ACI Fall 2007 Convention. Puerto Rico: ACI, 2007: 15-26.
    [55] JENSEN O M, HANSEN P F. Water-entrained cement-based materials: Ⅰ. principles and theoretical background[J]. Cement and Concrete Research, 2001, 31(4): 647-654. doi: 10.1016/S0008-8846(01)00463-X
    [56] MONTANARI L, SURANENI P, WEISS W J. Accounting for water stored in superabsorbent polymers in increasing the degree of hydration and reducing the shrinkage of internally cured cementitious mixtures[J]. Advances in Civil Engineering Materials, 2017, 6(1): 583-599. http://www.researchgate.net/publication/321730165_Accounting_for_Water_Stored_in_Superabsorbent_Polymers_in_Increasing_the_Degree_of_Hydration_and_Reducing_the_Shrinkage_of_Internally_Cured_Cementitious_Mixtures
    [57] BENTZ D P, SNYDER K A. Protected paste volume in concrete: extension to internal curing using saturated lightweight fine aggregate[J]. Cement and Concrete Research, 1999, 29(11): 1863-1867. doi: 10.1016/S0008-8846(99)00178-7
    [58] 高新文, 何锐. 高吸水树脂对混凝土强度与水化过程的影响[J]. 公路交通科技, 2018, 35(8): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201808006.htm

    GAO Xin-wen, HE Rui. Influence of super absorbent polymer on strength and hydration process of concrete[J]. Journal of Highway and Transportation Research and Development, 2018, 35(8): 34-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201808006.htm
    [59] 张宇, 叶华, 赵建青. 高吸水树脂改性建筑砂浆和易性和粘结性能的研究[J]. 化学建材, 2004(5): 53-56, 59. doi: 10.3969/j.issn.1004-1672.2004.05.013

    ZHANG Yu, YE Hua, ZHAO Jian-qing. Study of workable and adhesion properties of building mortar modified by superabsorbent resins[J]. Chemical Materials For Construction, 2004(5): 53-56, 59. (in Chinese) doi: 10.3969/j.issn.1004-1672.2004.05.013
    [60] SECRIERU E, MECHTCHERINE V, SCHRÖFL C, et al. Rheological characterisation and prediction of pumpability of strain-hardening cement-based-composites (SHCC) with and without addition of superabsorbent polymers (SAP) at various temperatures[J]. Construction and Building Materials, 2016, 112: 581-594. doi: 10.1016/j.conbuildmat.2016.02.161
    [61] MECHTCHERINE V, SECRIERU E, SCHRÖFL C. Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars-development of yield stress and plastic viscosity over time[J]. Cement and Concrete Research, 2015, 67: 52-65. doi: 10.1016/j.cemconres.2014.07.003
    [62] JENSEN O M, HANSEN P F. Water-entrained cement-based materials: Ⅱ. experimental observations[J]. Cement and Concrete Research, 2002, 32(6): 973-978. doi: 10.1016/S0008-8846(02)00737-8
    [63] CRAEYE B, GEIRNAERT M, SCHUTTER G D. Super absorbing polymers as an internal curing agent for mitigation of early-age cracking of high-performance concrete bridge decks[J]. Construction and Building Materials, 2011, 25(1): 1-13. doi: 10.1016/j.conbuildmat.2010.06.063
    [64] AZARIJAFARI H, KAZEMIAN A, RAHIMI M, et al. Effects of pre-soaked super absorbent polymers on fresh and hardened properties of self-consolidating lightweight concrete[J]. Construction and Building Materials, 2016, 113: 215-220. doi: 10.1016/j.conbuildmat.2016.03.010
    [65] DANG Jun-tao, ZHAO Jun, DU Zhao-hua. Effect of superabsorbent polymer on the properties of concrete[J]. Polymers, 2017, 9: 672-688. doi: 10.3390/polym9120672
    [66] 龙明策, 王鹏, 郑彤, 等. 高吸水性树脂溶胀热力学及吸水机理[J]. 化学通报, 2002(10): 705-709. doi: 10.3969/j.issn.0441-3776.2002.10.014

    LONG Ming-ce, WANG Peng, ZHENG Tong, et al. Swelling process and water-absorbing mechanism of super-absorbent resin[J]. Chemistry, 2002(10): 705-709. (in Chinese) doi: 10.3969/j.issn.0441-3776.2002.10.014
    [67] POURJAVADI A, KURDTABAR M, MAHDAVINIA G R, et al. Synthesis and super-swelling behavior of a novel protein-based superabsorbent hydrogel[J]. Polymer Bulletin, 2006, 57(6): 813-824. doi: 10.1007/s00289-006-0649-5
    [68] MÖNNIG, S. Superabsorbing additions in concrete: applications, modelling and comparison of different internal water sources[J]. Uni Stuttgart-Universitätsbibliothek, 2009, 998850330. http://elib.uni-stuttgart.de/opus/volltexte/2009/4781/
    [69] NESTLE N, KVHN A, FRIEDEMANN K, et al. Water balance and pore structure development in cementitious materials in internal curing with modified superabsorbent polymer studied by NMR[J]. Microporous and Mesoporous Materials, 2009, 125(1/2): 51-57. http://www.sciencedirect.com/science/article/pii/S138718110900081X
    [70] QIN Xiao, SHEN Ai-qin, LYU Zheng-hua, et al. Research on water transport behaviors and hydration characteristics of internal curing pavement concrete[J]. Construction and Building Materials, 2020, 248: 118714. doi: 10.1016/j.conbuildmat.2020.118714
    [71] YANG Jing-yu, GUO Yin-chuan, SHEN Ai-qin, et al. Research on drying shrinkage deformation and cracking risk of pavement concrete internally cured by SAPs[J]. Construction and Building Materials, 2019, 227: 116705. doi: 10.1016/j.conbuildmat.2019.116705
    [72] ESTEVES L P, LUKOŠIŪTĖI, ĈĖSNIEN J. Hydration of cement with superabsorbent polymers[J]. Journal of Thermal Analysis and Calorimetry, 2014, 118(2): 1385-1393. doi: 10.1007/s10973-014-4133-4
    [73] SARBAPALLI D, DHABALIA Y, SARKAR K, et al. Application of SAP and PEG as curing agents for ordinary cement-based systems: impact on the early age properties of paste and mortar with water-to-cement ratio of 0.4 and above[J]. European Journal of Environmental and Civil Engineering, 2017, 21(10): 1237-1252. doi: 10.1080/19648189.2016.1160843
    [74] ESPINOZA-HIJAZIN G, LOPEZ M. Extending internal curing to concrete mixtures with W/C higher than 0.42[J]. Construction and Building Materials, 2011, 25(3): 1236-1242. doi: 10.1016/j.conbuildmat.2010.09.031
    [75] ASSMANN A. Physical properties of concrete modified with superabsorbent polymers[D]. Stuttgart: Stuttgart University, 2013. (in German)
    [76] 张蕊, 周永祥, 高超, 等. SAP对火山灰混凝土收缩性能的改善作用[J]. 建筑材料学报, 2018, 21(4): 576-582. doi: 10.3969/j.issn.1007-9629.2018.04.008

    ZHANG Rui, ZHOU Yong-xiang, GAO Chao, et al. Improvement of SAP on shrinkage performance of pozzolanic concrete[J]. Journal of Building Materials, 2018, 21(4): 576-582. (in Chinese) doi: 10.3969/j.issn.1007-9629.2018.04.008
    [77] ASSMANN A, REINHARDT H W. Tensile creep and shrinkage of SAP modified concrete[J]. Cement and Concrete Research, 2014, 58: 179-185. doi: 10.1016/j.cemconres.2014.01.014
    [78] PANG Lu-feng, RUAN Shi-ye, CAI Yong-tao. Effects of internal curing by super absorbent polymer on shrinkage of concrete[J]. Key Engineering Materials, 2011, 477: 200-204. doi: 10.4028/www.scientific.net/KEM.477.200
    [79] 陈志晖. SAP内养生路面混凝土收缩及阻裂性能研究[D]. 西安: 长安大学, 2019.

    CHEN Zhi-hui. Study on shrinkage and cracking resistance of pavement concrete internal curing by superabsorbent polymers[D]. Xi'an: Chang'an University, 2019. (in Chinese)
    [80] 王立霞. 混凝土内养护技术国内外研究进展[J]. 混凝土, 2014(5): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201405011.htm

    WANG Li-xia. Research progress on internal curing concrete[J]. Concrete, 2014(5): 30-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201405011.htm
    [81] 史才军, 吕奎喜, 马先伟, 等. 高吸水性树脂对自密实混凝土性能的影响[J]. 材料导报, 2015, 29(20): 118-129. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201520027.htm

    SHI Cai-jun, LYU Kui-xi, MA Xian-wei, et al. Influence of SAP on the properties of self-compacting concrete[J]. Materials Reports, 2015, 29(20): 118-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201520027.htm
    [82] 阎培渝, 余成行, 王强, 等. 高强自密实混凝土的减缩措施[J]. 硅酸盐学报, 2015, 43(4): 363-367. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201504002.htm

    YAN Pei-yu, YU Cheng-xing, WANG Qiang, et al. Shrinkage-reducing measurement of high strength self-compacting concrete[J]. Journal of the Chinese Ceramic Society, 2015, 43(4): 363-367. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201504002.htm
    [83] IGARASHI S. Experimental study on prevention of autogenous deformation by internal curing using super-absorbent polymer particles[J]. Materials Science, 2006, DOI: 10.1617/2351580052.009.
    [84] SHEN De-jian, WANG Xu-dong, CHENG Da-bao, et al. Effect of internal curing with super absorbent polymers on autogenous shrinkage of concrete at early age[J]. Construction and Building Materials, 2016, 106: 512-522. doi: 10.1016/j.conbuildmat.2015.12.115
    [85] KANG S H, HONG S G, MOON J. Shrinkage characteristics of heat-treated ultra-high performance concrete and its mitigation using superabsorbent polymer based internal curing method[J]. Cement and Concrete Composites, 2018, 89: 130-138. doi: 10.1016/j.cemconcomp.2018.03.003
    [86] 何锐, 谈亚文, 薛成, 等. 以高吸水性树脂为混凝土内养护剂的研究进展[J]. 中国科技论文, 2019, 14(4): 464-470. doi: 10.3969/j.issn.2095-2783.2019.04.020

    HE Rui, TAN Ya-wen, XUE Cheng, et al. Research progress of superabsorbent polymers as internal curing agent in concrete[J]. China Sciencepaper, 2019, 14(4): 464-470. (in Chinese) doi: 10.3969/j.issn.2095-2783.2019.04.020
    [87] 邵力. 高吸水性树脂(SAP)对自密实混凝土性能的影响[D]. 广州: 广州大学, 2018.

    SHAO Li. Effect of super absorbent polymer on the properties of self-compacting concrete[D]. Guangzhou: Guangzhou University, 2018. (in Chinese)
    [88] MA Xian-wei, LIU Jian-hui, WU Ze-mei, et al. Effects of SAP on the properties and pore structure of high performance cement-based materials[J]. Construction and Building Materials, 2017, 131: 476-484. doi: 10.1016/j.conbuildmat.2016.11.090
    [89] LYU Zheng-hua, SHEN Ai-qin, MO Shi-xiu, et al. Life-cycle crack resistance and micro characteristics of internally cured concrete with superabsorbent polymers[J]. Construction and Building Materials, 2020, 259(3): 119794. http://www.sciencedirect.com/science/article/pii/S0950061820317992
    [90] LYU Zheng-hua, GUO Yin-chuan, CHEN Zhi-hui, et al. Research on shrinkage development and fracture properties of internal curing pavement concrete based on humidity compensation[J]. Construction and Building Materials, 2019, 203: 417-431. doi: 10.1016/j.conbuildmat.2019.01.115
    [91] 张珈碧. 高吸水树脂对混凝土断裂性能影响的研究[D]. 大连: 大连理工大学, 2018.

    ZHANG Jia-bi. Effects on fracture properties of concrete for using SAP[D]. Dalian: Dalian University of Technology, 2018. (in Chinese)
    [92] DENG Han-wen. Effects of superabsorbent polymer particles on flexural properties and self-healing behavior of ECC[J]. Journal of Southeast University (English Edition), 2018, 34(1): 95-103. http://www.researchgate.net/publication/326839587_Effects_of_superabsorbent_polymer_particles_on_flexural_properties_and_self-healing_behavior_of_ECC
    [93] TITTELBOOM K V, BELIE N D, LEHMANN F, et al. Acoustic emission analysis for the quantification of autonomous crack healing in concrete[J]. Construction and Building Materials, 2012, 28(1): 333-341. doi: 10.1016/j.conbuildmat.2011.08.079
    [94] CUENCA E, FERRARA L. Self-healing capability of fiber reinforced cementitious composites[J]. KSCE Journal of Civil Engineering, 2017, 21: 2777-2789. doi: 10.1007/s12205-017-0939-5
    [95] LEE H X, WONG H S, BUENFELD N R. Potential of superabsorbent polymer for self-sealing cracks in concrete[J]. British Ceramic Transactions, 2014, 109(5): 296-302.
    [96] MIGNON A, GRAULUS G J, SNOECK D, et al. pH-sensitive superabsorbent polymers: a potential candidate material for self-healing concrete[J]. Journal of Materials Science, 2015, 50(2): 970-979. doi: 10.1007/s10853-014-8657-6
    [97] MIGNON A, SNOECK D, SCHAUBROECK D, et al. pH-responsive superabsorbent polymers: a pathway to self-healing of mortar[J]. Reactive and Functional Polymers, 2015, 93: 68-76. doi: 10.1016/j.reactfunctpolym.2015.06.003
    [98] TITTELBOOM K V, WANG Jian-yun, ARAÚJO M, et al. Comparison of different approaches for self-healing concrete in a large-scale lab test[J]. Construction and Building Materials, 2016, 107: 125-137. doi: 10.1016/j.conbuildmat.2015.12.186
    [99] SNOECK D, DEWANCKELE J, CNUDDE V, et al. X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymers[J]. Cement and Concrete Composites, 2016, 65: 83-93. doi: 10.1016/j.cemconcomp.2015.10.016
    [100] SNOECK D, STEUPERAERT S, TITTELBOOM K V, et al. Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography[J]. Cement and Concrete Research, 2012, 42: 1113-1121. doi: 10.1016/j.cemconres.2012.05.005
    [101] 秦鸿根, 高美蓉, 庞超明, 等. SAP内养生剂改善膨胀混凝土性能及其机理研究[J]. 建筑材料学报, 2011, 14(3): 394-399. doi: 10.3969/j.issn.1007-9629.2011.03.021

    QIN Hong-gen, GAO Mei-rong, PANG Chao-ming, et al. Research on performance improvement of expansive concrete with internal curing agent SAP and its action mechanism[J]. Journal of Building Materials, 2011, 14(3): 394-399. (in Chinese) doi: 10.3969/j.issn.1007-9629.2011.03.021
    [102] LIU Jian-hui, FARZADNIA N, SHI Cai-jun. Effects of superabsorbent polymer on interfacial transition zone and mechanical properties of ultra-high performance concrete[J]. Construction and Building Materials, 2020, 231: 117142. doi: 10.1016/j.conbuildmat.2019.117142
    [103] PIÉRARD J. Mitigating autogenous shrinkage in HPC by internal curing using superabsorbent polymers[J]. Materials Science, 2006, DOI: 10.1617/2351580052.011.
    [104] KLEMM A J, SIKORA K S. The effect of superabsorbent polymers (SAP) on microstructure and mechanical properties of fly ash cementitious mortars[J]. Construction and Building Materials, 2013, 49: 134-143. doi: 10.1016/j.conbuildmat.2013.07.039
    [105] MECHTCHERINE V, GORGES M, SVHROEFL C, et al. Effect of internal curing by using superabsorbent polymers (SAP) on autogenous shrinkage and other properties of a high-performance fine-grained concrete: results of a RILEM round-robin test[J]. Materials and Structures, 2014, 47: 541-562. doi: 10.1617/s11527-013-0078-5
    [106] SENFF L, MODOLO R C E, ASCENSÃO G, et al. Development of mortars containing superabsorbent polymer[J]. Construction and Building Materials, 2015, 95: 575-584. doi: 10.1016/j.conbuildmat.2015.07.173
    [107] JENSEN O M, LURA P. Techniques and materials for internal water curing of concrete[J]. Materials and Structures, 2006, 39: 817-825. doi: 10.1617/s11527-006-9136-6
    [108] 姜玉丹, 金祖权, 陈永丰, 等. 高吸水树脂对混凝土水化及强度的影响[J]. 材料导报, 2017, 31(12): 40-44, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201724010.htm

    JIANG Yu-dan, JIN Zu-qun, CHEN Yong-feng, et al. Effect of super-absorbent polymer on hydration and compressive strength of concrete[J]. Materials Reports, 2017, 31(12): 40-44, 49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201724010.htm
    [109] 王振兴, 母涛, 张文进. SAP自养护材料对混凝土力学性能及孔结构的影响[J]. 居业, 2018(12): 2-3. doi: 10.3969/j.issn.2095-4085.2018.12.002

    WANG Zhen-xing, MU Tao, ZHANG Wen-jin. The influence of SAP self-curing material on the mechanical properties and pore structure of concrete[J]. Create Living, 2018(12): 2-3. (in Chinese) doi: 10.3969/j.issn.2095-4085.2018.12.002
    [110] 逢鲁峰. 掺高吸水树脂内养护高性能混凝土的性能和作用机理研究[D]. 北京: 中国矿业大学, 2013.

    FENG Lu-feng. Study on the performance and mechanism of internal curing high-performance concrete with super absorbent polymer[D]. Beijing: China University of Mining and Technology, 2013. (in Chinese)
    [111] POURJAVADI A, FAKOORPOOR S M, KHALOO A, et al. Improving the performance of cement-based composites containing superabsorbent polymers by utilization of nano-SiO2 particles[J]. Materials and Design, 2012, 42: 94-101. doi: 10.1016/j.matdes.2012.05.030
    [112] 李铁军, 孟云芳, 陈燕飞. 超吸水聚合物自养护混凝土试验研究[J]. 宁夏工程技术, 2011, 10(2): 148-152. doi: 10.3969/j.issn.1671-7244.2011.02.014

    LI Tie-jun, MENG Yun-fang, CHEN Yan-fei. Experimental study of super-absorbent polymer internal curing concrete[J]. Ningxia Engineering Technology, 2011, 10(2): 148-152. (in Chinese) doi: 10.3969/j.issn.1671-7244.2011.02.014
    [113] BEUSHAUSEN H, GILLMER M. The use of superabsorbent polymers to reduce cracking of bonded mortar overlays[J]. Cement and Concrete Composites, 2014, 52: 1-8. doi: 10.1016/j.cemconcomp.2014.03.009
    [114] BEUSHAUSEN H, GILLMER M, ALEXANDER M. The influence of superabsorbent polymers on strength and durability properties of blended cement mortars[J]. Cement and Concrete Composites, 2014, 52: 73-80. doi: 10.1016/j.cemconcomp.2014.03.008
    [115] CRAEYE B, DE SCHUTTER G. Experimental evaluation of mitigation of autogenous shrinkage by means of a vertical dilatometer for concrete[C]//CRC Press. Eight International Conference on Creep, Shrinkage and Durability Mechanics of Concrete and Concrete Structures. Leiden: CRC Press, 2008: 909-914.
    [116] 王嘉. 高吸水性树脂对超高性能混凝土性能的影响[D]. 长沙: 湖南大学, 2012.

    WANG Jia. The effects of super absorbent polymer on the performance of ultra high performance concrete[D]. Changsha: Hunan University, 2012. (in Chinese)
    [117] CUSSON D, LOUNIS Z, DAIGLE L. Benefits of internal curing on service life and life-cycle cost of high-performance concrete bridge decks—a case study[J]. Cement and Concrete Composites, 2010, 32: 339-350. doi: 10.1016/j.cemconcomp.2010.02.007
    [118] 孙庆合, 魏永起, 孟云芳, 等. 超吸水聚合物混凝土抗渗性能的研究[J]. 新型建筑材料, 2009, 36(6): 68-71. doi: 10.3969/j.issn.1001-702X.2009.06.022

    SUN Qing-he, WEI Yong-qi, MENG Yun-fang, et al. Study on impermeability of super absorption polymer concrete[J]. New Building Materials, 2009, 36(6): 68-71. (in Chinese) doi: 10.3969/j.issn.1001-702X.2009.06.022
    [119] HASHOLT M T, JENSEN O M. Chloride migration in concrete with superabsorbent polymers[J]. Cement and Concrete Composites, 2015, 55: 290-297. doi: 10.1016/j.cemconcomp.2014.09.023
    [120] 张力冉, 孔祥明, 邢锋, 等. 高吸水树脂内养护混凝土的氯离子渗透及碳化性能[J]. 河南科技大学学报(自然科学版), 2019, 40(1): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201901012.htm

    ZHANG Li-ran, KONG Xiang-ming, XING Feng, et al. Chloride ion invasion and carbonation property of internal cured concrete with super-absorbent polymer[J]. Journal of Henan University of Science and Technology (Natural Science), 2019, 40(1): 60-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201901012.htm
    [121] 田园. 内养护高强混凝土抗冻融和抗盐冻性能研究[D]. 郑州: 华北水利水电大学, 2019.

    TIAN Yuan. Study on freeze-thaw resistance and salt freezing performance of internal curing high strength concrete[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019. (in Chinese)
    [122] 王德志, 孟云芳, 韩静云. 超吸水聚合物内养护对混凝土抗冻性的影响[J]. 混凝土与水泥制品, 2010(1): 1-3. doi: 10.3969/j.issn.1000-4637.2010.01.001

    WANG De-zhi, MENG Yun-fang, HAN Jing-yun. Effects of internal curing caused by super absorbent polymer on the frost resistance[J]. China Concrete and Cement Products, 2010(1): 1-3. (in Chinese) doi: 10.3969/j.issn.1000-4637.2010.01.001
    [123] 吴文选. 内养护混凝土的微观结构及其性能研究[D]. 武汉: 武汉理工大学, 2010.

    WU Wen-xuan. Research on microstructure and properties of internal curing concrete[D]. Wuhan: Wuhan University of Technology, 2010. (in Chinese)
    [124] 丁以兵, 詹炳根, 黄其海, 等. 自养护作用下的高性能混凝土抗冻与抗渗性能[J]. 合肥工业大学学报(自然科学版), 2007, 30(5): 603-606. doi: 10.3969/j.issn.1003-5060.2007.05.020

    DING Yi-bing, ZHAN Bing-gen, HUANG Qi-hai, et al. Study of the frost resistance and impermeability of high-performance concrete under self-curing[J]. Journal of Hefei University of Technology (Natural Science), 2007, 30(5): 603-606. (in Chinese) doi: 10.3969/j.issn.1003-5060.2007.05.020
    [125] 蔡永涛. 超强吸水性树脂SAP混凝土抗冻性能的研究[D]. 济南: 山东建筑大学, 2011.

    CAI Yong-tao. The research on the frost resistance of concrete with super absorbent polymer[D]. Jinan: Shandong Jianzhu University, 2011. (in Chinese)
    [126] LURA P, BREUGEL K V. Effect of size of lightweight aggregate particles on volume changes of lightweight aggregate concrete at early ages[J]. Innovations and Developments in Concrete Materials and Construction, 2002, DOI: 10.1680/iadicmac.31791.0063.
    [127] BENTZ D P, JENSEN O M. Mitigation strategies for autogenous shrinkage cracking[J]. Cement and Concrete Composites, 2004, 26: 677-685. doi: 10.1016/S0958-9465(03)00045-3
    [128] CRAEYE B, COCKAERTS G, MAEIJER P K D. Improving freeze-thaw resistance of concrete road infrastructure by means of superabsorbent polymers[J]. Infrastructures, 2018, 3(4): 1-14. http://www.researchgate.net/publication/324210451_Improving_Freeze-Thaw_Resistance_of_Concrete_Road_Infrastructure_by_Means_of_Superabsorbent_Polymers
    [129] MIGNON A, SNOECK D, DUBRUEL P, et al. Crack mitigation in concrete: superabsorbent polymers as key to success?[J]. Materials, 2017, 10(3): 237. doi: 10.3390/ma10030237
    [130] MECHTCHERINE V. Use of superabsorbent polymers (SAP) as concrete additive[J]. RILEM Technical Letters, 2016, 1: 81-81. doi: 10.21809/rilemtechlett.2016.18
    [131] HASHOLT M T, JENSEN O M, LAUSTSEN S. Superabsorbent polymers as a means of improving frost resistance of concrete[J]. Advances in Civil Engineering Materials, 2015, 4(1): 237-256. http://www.researchgate.net/publication/282869848_Superabsorbent_Polymers_as_a_Means_of_Improving_Frost_Resistance_of_Concrete
    [132] RANGARAJU P R, OLEK J, DIAMOND S. An investigation into the influence of inter-aggregate spacing and the extent of the ITZ on properties of Portland cement concretes[J]. Cement and Concrete Research, 2010, 40(11): 1601-1608. doi: 10.1016/j.cemconres.2010.07.002
    [133] LYU Zhen-hua, SHEN Ai-qin, HE Zi-ming, et al. Absorption characteristics and shrinkage mitigation of superabsorbent polymers in pavement concrete[J]. International Journal of Pavement Engineering, 2020, DOI: 10.1080/10298436.2020.1742334.
    [134] LEE H X D, WONG H S, BUENFELD N R. Self-sealing of cracks in concrete using superabsorbent polymers[J]. Cement and Concrete Research, 2016, 79: 194-208. doi: 10.1016/j.cemconres.2015.09.008
    [135] OLAWUYI B J, BOSHOFF W P. Influence of SAP content and curing age on air void distribution of high performance concrete using 3D volume analysis[J]. Construction and Building Materials, 2017, 135: 580-589. doi: 10.1016/j.conbuildmat.2016.12.128
    [136] BRVDERN A E, MECHTCHERINE V. Multifunctional use of SAP in strain-hardening cement-based composites[C]//RILEM Publication SARL. International RILEM Conference on Use of Superabsorbent Polymers and other New Additives in Concrete. Lyngby: RILEM Publication SARL, 2010: 11-22.
    [137] 曹长柱, 衣丽娇, 王会新. SAP内养护混凝土强度和收缩性能的应用研究[J]. 建筑技术, 2017, 48(10): 1067-1069. doi: 10.3969/j.issn.1000-4726.2017.10.019

    CAO Chang-zhu, YI Li-jiao, WANG Hui-xin. Application of strength and shrinkage of concrete in SAP[J]. Architecture Technology, 2017, 48(10): 1067-1069. (in Chinese) doi: 10.3969/j.issn.1000-4726.2017.10.019
  • 加载中
图(46)
计量
  • 文章访问数:  2436
  • HTML全文浏览量:  927
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回