留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强震作用下群桩基础抗液化性能的振动台试验

冯忠居 张聪 何静斌 刘闯 董芸秀 袁枫斌

冯忠居, 张聪, 何静斌, 刘闯, 董芸秀, 袁枫斌. 强震作用下群桩基础抗液化性能的振动台试验[J]. 交通运输工程学报, 2021, 21(4): 72-83. doi: 10.19818/j.cnki.1671-1637.2021.04.004
引用本文: 冯忠居, 张聪, 何静斌, 刘闯, 董芸秀, 袁枫斌. 强震作用下群桩基础抗液化性能的振动台试验[J]. 交通运输工程学报, 2021, 21(4): 72-83. doi: 10.19818/j.cnki.1671-1637.2021.04.004
FENG Zhong-ju, ZHANG Cong, HE Jing-bin, LIU Chuang, DONG Yun-xiu, YUAN Feng-bin. Shaking table test of liquefaction resistance of group piles under strong earthquake[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 72-83. doi: 10.19818/j.cnki.1671-1637.2021.04.004
Citation: FENG Zhong-ju, ZHANG Cong, HE Jing-bin, LIU Chuang, DONG Yun-xiu, YUAN Feng-bin. Shaking table test of liquefaction resistance of group piles under strong earthquake[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 72-83. doi: 10.19818/j.cnki.1671-1637.2021.04.004

强震作用下群桩基础抗液化性能的振动台试验

doi: 10.19818/j.cnki.1671-1637.2021.04.004
基金项目: 

国家自然科学基金项目 51708040

海南省交通科技项目 HNZXY2015-045R

详细信息
    作者简介:

    冯忠居(1965-),男,山西万荣人,长安大学教授,工学博士,从事桥梁桩基与岩土工程研究

    通讯作者:

    张聪(1994-),男,河南焦作人,长安大学工学博士研究生

  • 中图分类号: U443.15

Shaking table test of liquefaction resistance of group piles under strong earthquake

Funds: 

National Natural Science Foundation of China 51708040

Hainan Transportation Technology Project HNZXY2015-045R

More Information
  • 摘要: 为研究强震作用下群桩基础抗液化性能优于单桩基础的具体表现形式,依托海南省海文大桥工程,采用振动台模型试验开展单桩、四桩、六桩基础处理液化地基的差异性研究,分析了3种不同工况下饱和粉细砂土层中孔压比、桩身加速度和弯矩时程响应差异及其三者相互关系。研究结果表明:0.35g地震动荷载作用下,3种工况均产生液化现象,饱和粉细砂土层深处的孔压比开始增长时刻及稳定时刻均滞后于浅层;六桩基础完全液化耗时比四桩基础延缓4.41~4.82 s,四桩基础完全液化耗时比单桩基础延缓4.00~4.42 s;随着桩数的增加,同一深度处饱和粉细砂土层中桩身最大加速度及其放大系数均逐渐减小,桩身最大加速度出现时刻逐渐滞后,且随着孔压比的增大,桩身加速度逐渐减小;六桩基础最大弯矩较四桩基础小25.95%~43.50%,四桩基础最大弯矩较单桩基础小28.80%~33.10%,单桩基础最大弯矩出现时刻比四桩基础早1.22~1.27 s,四桩基础较六桩基础提前0.66~0.72 s,且桩身弯矩随孔压比的增大逐渐衰减,说明液化前饱和粉细砂土层具有软化减震作用。可见,六桩基础抗液化性能优于四桩及单桩基础,在液化土层桩基础抗震设计中,可通过群桩基础形式提高其抗液化性能。

     

  • 图  1  55#桩基

    Figure  1.  Pile foundation 55#

    图  2  叠层剪切式模型箱

    Figure  2.  Laminated shear model box

    图  3  模型桩

    Figure  3.  Model piles

    图  4  桩基自振频率

    Figure  4.  Natural frequencies of pile foundations

    图  5  试验用砂颗粒级配曲线

    Figure  5.  Particle size distribution curve of test sand

    图  6  地震波时程和频谱

    Figure  6.  Time history and spectrum of seismic wave

    图  7  测试元件布设

    Figure  7.  Layout of test elements

    图  8  粉细砂液化

    Figure  8.  Fine sand liquefaction

    图  9  孔压比时程曲线

    Figure  9.  Pore pressure ratio time history curves

    图  10  加速度时程曲线

    Figure  10.  Acceleration time history curves

    图  11  加速度放大系数

    Figure  11.  Acceleration amplification factors

    图  12  弯矩时程曲线

    Figure  12.  Bending moment time history curves

    表  1  振动台模型试验相似常数

    Table  1.   Similarity constants of shaking table model test

    分类 物理量 量纲 相似常数
    荷载 加速度a LT-2 1 1
    重力加速度g LT-2 1 1
    速度v LT-1 Cl1/2 0.2
    时间t T Cl1/2 0.2
    几何形状 模型长度l L Cl 1/25
    线位移δ L Cl 1/25
    频率ω T-1 Cl-1/2 5
    材料特征 弹性模量E FL-2 1 1
    应力σ FL-2 1 1
    应变ε 1 1
    泊松比μ 1 1
    下载: 导出CSV

    表  2  模型桩参数

    Table  2.   Model pile parameters

    桩身材料 桩长/cm 桩径/cm 配筋率/% 弹性模量/MPa
    C35混凝土 138 8 2.4 3.15×104
    下载: 导出CSV

    表  3  土体剪切波速

    Table  3.   Shear wave velocities of soils m·s-1

    名称 淤泥质黏土 饱和粉细砂 卵石土
    剪切波速 原型 136 162 526
    模型 138 177 539
    下载: 导出CSV

    表  4  试验砂物理力学指标

    Table  4.   Physical and mechanical indexes of test sand

    土层 土粒比重 含水率/% 孔隙比 压缩模量/MPa 黏聚力/ kPa 内摩擦角/(°) 饱和度/%
    饱和粉细砂 2.68 42 0.97 3.84 3 14 100
    下载: 导出CSV

    表  5  试验工况

    Table  5.   Test conditions

    工况类型 桩基类别 加载波形 动峰值加速度/g 振动持时/s
    工况1 单桩 自由波 0.35 40
    工况2 四桩
    工况3 六桩
    下载: 导出CSV

    表  6  测试元件布设位置

    Table  6.   Layout positions of test elements

    测试元件类型 加速度传感器 孔压传感器 应变片 位移传感器
    埋设位置/cm 26、39、52 34、44 26、39、52 配重块顶部
    数量/个 9 6 18 3
    下载: 导出CSV

    表  7  加速度衰减时刻孔压比占稳定值的百分比

    Table  7.   Percentage of pore pressure ratios to their stable values when accelerations attenuating

    土层深度/cm 桩型 加速度衰减时刻/s 加速度衰减时刻孔压比 加速度衰减时刻孔压比占稳定值的百分比/%
    26 单桩 10.83 0.19 23.75
    四桩 13.94 0.13 16.25
    六桩 18.69 0.10 12.50
    52 单桩 13.69 0.35 43.75
    四桩 17.35 0.30 37.50
    六桩 20.11 0.27 33.75
    下载: 导出CSV

    表  8  加速度衰减时段占孔压比稳定时段的百分比

    Table  8.   Percentages of acceleration attenuation periods to stable periods of pore pressure ratios

    土层深度/ cm 桩型 加速度衰减时刻/ s 孔压比开始增长时刻/ s 孔压比稳定时刻/ s 加速度衰减时段占孔压比稳定时段的百分比/%
    26 单桩 10.83 9.13 21.45 86.20
    四桩 13.94 13.13 25.45 93.43
    六桩 18.69 18.02 30.27 94.53
    52 单桩 13.69 10.01 22.43 70.37
    四桩 17.35 14.41 26.85 76.37
    六桩 20.11 19.01 31.26 91.02
    下载: 导出CSV

    表  9  弯矩衰减时刻孔压比占稳定值的百分比

    Table  9.   Percentages of pore pressure ratios to their stable values when bending moment attenuating

    土层深度/cm 桩型 弯矩衰减时刻/s 弯矩衰减时刻孔压比 衰减时刻孔压比占稳定值的百分比/%
    26 单桩 11.16 0.16 20.00
    四桩 14.77 0.13 16.25
    六桩 19.18 0.09 11.25
    52 单桩 11.87 0.28 35.00
    四桩 15.67 0.24 30.00
    六桩 20.04 0.20 25.00
    下载: 导出CSV

    表  10  弯矩衰减时段占孔压比稳定时段的百分比

    Table  10.   Percentages of bending moment attenuation periods to stable periods of pore pressure ratios

    土层深度/ cm 桩型 弯矩衰减时刻/s 孔压比开始增长时刻/s 孔压比稳定时刻/s 弯矩衰减时段占孔压比稳定时段的百分比/%
    26 单桩 11.16 9.13 21.45 83.52
    四桩 14.77 13.13 25.45 86.69
    六桩 19.18 18.02 30.27 90.53
    52 单桩 11.87 10.01 22.43 85.02
    四桩 15.67 14.41 26.85 89.87
    六桩 20.04 19.01 31.26 91.59
    下载: 导出CSV
  • [1] FENG Zhong-ju, HU Hai-bo, DONG Yun-xiu, et al. Effect of steel casing on vertical bearing characteristics of steel tube-reinforced concrete piles in loess area[J]. Applied Sciences, 2019, 9(14): 2874. doi: 10.3390/app9142874
    [2] DONG Yun-xiu, FENG Zhong-ju, HU Hai-bo, et al. The horizontal bearing capacity of composite concrete-filled steel tube piles[J]. Advances in Civil Engineering, 2020(1): 1-15. http://www.researchgate.net/publication/338509615_The_Horizontal_Bearing_Capacity_of_Composite_Concrete-Filled_Steel_Tube_Piles
    [3] FENG Zhong-ju, HUO Jian-wei, HU Hai-bo, et al. Research on corrosion damage and bearing characteristics of bridge pile foundation concrete under a dry-wet-freeze-thaw cycle[J]. Advances in Civil Engineering, 2021, 2021(6): 1-13. http://www.researchgate.net/publication/348625657_Research_on_Corrosion_Damage_and_Bearing_Characteristics_of_Bridge_Pile_Foundation_Concrete_under_a_Dry-Wet-Freeze-Thaw_Cycle
    [4] JIANG Guan, FENG Zhong-ju, ZHAO Rui-xin, et al. Case study on safety assessment of rockfall and splash stone protective structures for secondary excavation of highway slope[J]. Advances in Civil Engineering, 2021, 2021(2): 1-9. http://www.researchgate.net/publication/348228424_Case_Study_on_Safety_Assessment_of_Rockfall_and_Splash_Stone_Protective_Structures_for_Secondary_Excavation_of_Highway_Slope
    [5] BHATTACHARYA S, HYODO M, GODA K, et al. Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) Earthquake[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(11): 1618-1628. doi: 10.1016/j.soildyn.2011.06.006
    [6] 冯忠居, 霍建维, 胡海波, 等. 高寒盐沼泽区干湿-冻融循环下桥梁桩基腐蚀损伤与承载特性[J]. 交通运输工程学报, 2020, 20(6): 135-147. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202006015.htm

    FENG Zhong-ju, HUO Jian-wei, HU Hai-bo, et al. Corrosion damage and bearing characteristics of bridge pile foundations under dry-wet-freeze-thaw cycle in alpine salt marsh area[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 135-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202006015.htm
    [7] ZHOU Xiang-lian, WANG Jian-hua. Analysis of pile groups in a poroelastic medium subjected to horizontal vibration[J]. Computers and Geotechnics, 2009, 36(3): 406-418. doi: 10.1016/j.compgeo.2008.08.013
    [8] LU Jian-fei, XU Bin, WANG Jian-hua. A numerical model for the isolation of moving-load induced vibrations by pile rows embedded in layered porous media[J]. International Journal of Solids and Structures, 2009, 46(21): 3771-3781. doi: 10.1016/j.ijsolstr.2009.06.022
    [9] 李耘宇, 胡晓敏, 张嵘峰, 等. 地震液化对桥梁桩基础极限承载力的影响[J]. 武汉理工大学学报(交通科学与工程版), 2006, 30(6): 1044-1047. doi: 10.3963/j.issn.2095-3844.2006.06.032

    LI Yun-yu, HU Xiao-min, ZHANG Rong-feng, et al. Research on the transverse limit bearing weight of the pile foundation of the bridges aroused by the earthquake liquefying[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2006, 30(6): 1044-1047. (in Chinese) doi: 10.3963/j.issn.2095-3844.2006.06.032
    [10] KLAR A, FRYDMAN S, BAKER R. Seismic analysis of infinite pile groups in liquefiable soil[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(8): 565-575. doi: 10.1016/j.soildyn.2003.10.007
    [11] 冯忠居, 董芸秀, 何静斌, 等. 强震作用下饱和粉细砂液化振动台试验[J]. 哈尔滨工业大学学报, 2019, 51(9): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201909028.htm

    FENG Zhong-ju, DONG Yun-xiu, HE Jing-bin, et al. Shaking table test of saturated fine sand liquefaction under strong earthquake[J]. Journal of Harbin Institute of Technology, 2019, 51(9): 186-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201909028.htm
    [12] 刘闯, 冯忠居, 张福强, 等. 地震作用下特大型桥梁嵌岩桩基础动力响应[J]. 交通运输工程学报, 2018, 18(4): 53-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201804010.htm

    LIU Chuang, FENG Zhong-ju, ZHANG Fu-qiang, et al. Dynamic response of rock-socketed pile foundation for extra- large bridge under earthquake action[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 53-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201804010.htm
    [13] 冯忠居, 王溪清, 李孝雄, 等. 强震作用下的砂土液化对桩基力学特性影响[J]. 交通运输工程学报, 2019, 19(1): 71-84. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201901010.htm

    FENG Zhong-ju, WANG Xi-qing, LI Xiao-xiong, et al. Effect of sand liquefaction on mechanical properties of pile foundation under strong earthquake[J]. Journal of Traffic and Transportation Engineering, 2019, 19 (1): 71-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201901010.htm
    [14] 冯忠居, 陈慧芸, 袁枫斌, 等. 桩-土-断层耦合作用下桥梁桩基竖向承载特性[J]. 交通运输工程学报, 2019, 19(2): 36-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201902007.htm

    FENG Zhong-ju, CHEN Hui-yun, YUAN Feng-bin, et al Vertical bearing characteristics of bridge pile foundation under pile-soil-fault coupling action[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 36-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201902007.htm
    [15] 何静斌, 冯忠居, 董芸秀, 等. 强震区桩-土-断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007026.htm

    HE Jing-bin, FENG Zhong-ju, DONG Yun-xiu, et al. Dynamic response of pile foundation under pile-soil-fault coupling effect in meizoseismal area[J]. Rock and Soil Mechanics, 2020, 41(7): 2389-2400. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007026.htm
    [16] DONG Yun-xiu, FENG Zhong-ju, HU Hai-bo, et al. Seismic response of a bridge pile foundation during a shaking table test[J]. Shock and Vibration, 2019(2): 1-16. http://www.researchgate.net/publication/337566093_Seismic_Response_of_a_Bridge_Pile_Foundation_during_a_Shaking_Table_Test
    [17] 李雨润, 闫志晓, 张健, 等. 饱和砂土中直群桩动力响应离心机振动台试验与简化数值模型研究[J]. 岩石力学与工程学报, 2020, 39(6): 1252-1264. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006015.htm

    LI Yu-run, YAN Zhi-xiao, ZHANG Jian, et al. Centrifugal shaking table test and numerical simulation of dynamic responses of straight pile group in saturated sand[J]. Chinese Journal of Rock Mechanics and Engineering: 2020, 39(6): 1252-1264. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006015.htm
    [18] 张健, 李雨润, 闫志晓, 等. 基于频谱分析的饱和砂土场地直斜群桩承台-土体耦合作用下桩身弯矩分布规律研究[J]. 岩石力学与工程学报, 2020, 39(4): 829-844. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004017.htm

    ZHANG Jian, LI Yun-run, YAN Zhi-xiao, et al. Study on the distribution law of the bending moment of vertical and batter piles in saturated sand under cap and soil coupling based on frequency analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 829-844. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004017.htm
    [19] 张恒源, 钱德玲, 沈超, 等. 水平和竖向地震作用下液化场地群桩基础动力响应试验研究[J]. 岩土力学, 2020, 41(3): 905-914. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003021.htm

    ZHANG Heng-yuan, QIAN De-ling, SHEN Chao, et al. Experimental investigation on dynamic response of pile group foundation on liquefiable ground subjected to horizontal and vertical earthquake excitations[J]. Rock and Soil Mechanics, 2020, 41(3): 905-914. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003021.htm
    [20] 许成顺, 豆鹏飞, 杜修力, 等. 液化场地-群桩基础-结构体系动力响应分析——大型振动台模型试验研究[J]. 岩土工程学报, 2019, 41(12): 2173-2181. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912004.htm

    XU Cheng-shun, DOU Peng-fei, DU Xiu-li, et al. Dynamic response analysis of liquefied site-pile group foundation-structure system—large-scale shaking table model test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2173-2181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912004.htm
    [21] 黄占芳, 刘永强, 白晓红. 液化土群桩基础水平地震力振动过程中桩侧摩阻力和桩端摩阻力的变化分析[J]. 振动与冲击, 2017, 36(24): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201724021.htm

    HUANG Zhan-fang, LIU Yong-qiang, BAI Xiao-hong. Changes of pile-side friction and pile-end friction in horizontal seismic vibration process of piles foundation in liquefiable soil[J]. Journal of Vibration and Shock, 2017, 36(24): 136-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201724021.htm
    [22] TANG Liang, LING Xian-zhang. Response of a RC pile group in liquefiable soil: a shake-table investigation[J]. Soil Dynamics and Earthquake Engineering, 2014, 67: 301-315. http://www.sciencedirect.com/science/article/pii/S0267726114002176
    [23] 刘汉龙, 陈育民, 赵楠. 刚性排水桩的技术开发与抗液化特性试验研究[C]//中国岩石力学与工程学会. 第一届全国工程安全与防护学术会议论文集. 南京: 中国岩石力学与工程学会, 2008: 531-535.

    LIU Han-long, CHEN Yu-min, ZHAO Nan. Development technology of rigidity-drain pile and laboratory test of its anti-liquefaction characteristics[C]//Chinese Society for Rock Mechanics and Engineering. Proceedings of the 1st National Conference of Engineering and Safety Protection. Nanjing: Chinese Society for Rock Mechanics and Engineering, 2008: 531-535. (in Chinese)
    [24] 赵楠. 刚性排水桩的抗液化性状试验与分析[D]. 南京: 河海大学, 2008.

    ZHAO Nan. Test and analysis on anti-liquefaction behaviors of rigidity-drain pile[D]. Nanjing: Hohai University, 2008. (in Chinese)
    [25] 陈育民, 刘汉龙, 赵楠. 抗液化刚性排水桩振动台试验的数值模拟研究[J]. 土木工程学报, 2010, 43(12): 114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201012016.htm

    CHEN Yu-min, LIU Han-long, ZHAO Nan. Laboratory test on anti-liquefaction characteristics of rigidity-drain pile[J]. China Civil Engineering Journal, 2010, 43(12): 114-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201012016.htm
    [26] 杨耀辉, 陈育民, 刘汉龙, 等. 排水刚性桩单桩抗液化性能的振动台试验研究[J]. 岩土工程学报, 2018, 40(2): 287-295. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802010.htm

    YANG Yao-hui, CHEN Yu-min, LIU Han-long, et al. Shaking table tests on liquefaction resistance performance of single rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 287-295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802010.htm
    [27] 杨耀辉, 陈育民, 刘汉龙, 等. 排水刚性桩群桩抗液化性能的振动台试验研究[J]. 岩土力学, 2018, 39(11): 4025-4032. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811015.htm

    YANG Yao-hui, CHEN Yu-min, LIU Han-long, et al. Investigation on liquefaction resistance performance of rigid-drainage pile groups by shaking table[J]. Rock and Soil Mechanics, 2018, 39(11): 4025-4032. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811015.htm
    [28] 刘星, 王睿, 张建民. 液化地基中群桩基础地震响应分析[J]. 岩土工程学报, 2015, 37(12): 2326-2331. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201512032.htm

    LIU Xing, WANG Rui, ZHANG Jian-min. Seismic response analysis of pile groups in liquefiable foundations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2326-2331. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201512032.htm
    [29] 戴琰, 陈国兴, 王志华. 可液化地基群桩基础地震反应总应力与有效应力分析的比较[J]. 防灾减灾工程学报, 2017, 37(5): 795-801. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201705016.htm

    DAI Yan, CHEN Guo-xing, WANG Zhi-hua. Comparison study of total stress and effective stress analyses for seismic response of pile group foundation in liquefiable soil[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(5): 795-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201705016.htm
    [30] 何剑平, 陈卫忠. 桩-土复合地基抗液化数值试验分析[J]. 工程力学, 2012, 29(11): 175-182, 190. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201211029.htm

    HE Jian-ping, CHEN Wei-zhong. The numerical experiments and analysis on anti-liquefaction effect of pile-soil composite foundation[J]. Engineering Mechanics, 2012, 29(11): 175-182, 190. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201211029.htm
    [31] 黄维平, 邬瑞锋, 张前国. 配重不足时的动力试验模型与原型相似关系问题的探讨[J]. 地震工程与工程振动, 1994(4): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199404007.htm

    HUANG Wei-ping, WU Rui-feng, ZHANG Qian-guo. Study on the analogy between scale models with less ballast and their prototypes under shaking table test[J]. Earthquake Engineering and Engineering Dynamics, 1994(4): 64-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199404007.htm
    [32] 张敏政. 地震模拟实验中相似律应用的若干问题[J]. 地震工程与工程振动, 1997(2): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC702.006.htm

    ZHANG Min-zheng. Study on similitude laws for shaking table tests[J]. Earthquake Engineering and Engineering Dynamics, 1997(2): 52-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC702.006.htm
  • 加载中
图(12) / 表(10)
计量
  • 文章访问数:  640
  • HTML全文浏览量:  261
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-03
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回