留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢-混凝土组合连续弯箱梁抗火性能与设计方法

宋超杰 张岗 贺拴海 KODURV K 黄侨 李徐阳

宋超杰, 张岗, 贺拴海, KODURV K, 黄侨, 李徐阳. 钢-混凝土组合连续弯箱梁抗火性能与设计方法[J]. 交通运输工程学报, 2021, 21(4): 139-149. doi: 10.19818/j.cnki.1671-1637.2021.04.010
引用本文: 宋超杰, 张岗, 贺拴海, KODURV K, 黄侨, 李徐阳. 钢-混凝土组合连续弯箱梁抗火性能与设计方法[J]. 交通运输工程学报, 2021, 21(4): 139-149. doi: 10.19818/j.cnki.1671-1637.2021.04.010
SONG Chao-jie, ZHANG Gang, HE Shuan-hai, KODUR V K, HUANG Qiao, LI Xu-yang. Fire resistance performance and design method of steel-concretecomposite continuous curved box girders[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 139-149. doi: 10.19818/j.cnki.1671-1637.2021.04.010
Citation: SONG Chao-jie, ZHANG Gang, HE Shuan-hai, KODUR V K, HUANG Qiao, LI Xu-yang. Fire resistance performance and design method of steel-concretecomposite continuous curved box girders[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 139-149. doi: 10.19818/j.cnki.1671-1637.2021.04.010

钢-混凝土组合连续弯箱梁抗火性能与设计方法

doi: 10.19818/j.cnki.1671-1637.2021.04.010
基金项目: 

国家自然科学基金项目 51878057

国家自然科学基金项目 52078043

中央高校基本科研业务费专项资金项目 300102210217

中央高校基本科研业务费专项资金项目 300102211706

详细信息
    作者简介:

    宋超杰(1995-),男,陕西洛川人,长安大学工学博士研究生,从事桥梁结构抗火研究

    通讯作者:

    张岗(1980-),男,甘肃庆阳人,长安大学教授,工学博士

  • 中图分类号: U448.216

Fire resistance performance and design method of steel-concretecomposite continuous curved box girders

Funds: 

National Natural Science Foundation of China 51878057

National Natural Science Foundation of China 52078043

Fundamental Research Funds for the Central Universities 300102210217

Fundamental Research Funds for the Central Universities 300102211706

More Information
  • 摘要: 为研究提高钢-混凝土组合连续弯箱梁抗火性能的策略,选取某三跨钢-混凝土组合连续弯箱梁为研究对象,利用通用有限元软件ANSYS建立了其在火灾下的三维非线性两阶段分析模型;基于已有热-结构耦合分析方法,模型考虑了钢箱梁内空腔辐射传热过程和其上翼缘与混凝土板的接触边界条件;将模型得到的预测结果与试验数据进行了比较,验证了模型的可靠性;采用建立的模型在不同纵向受火位置、火灾强度和荷载水平作用下对钢-混凝土组合连续弯箱梁跨中挠度进行了参数敏感性分析,研究了其极限承载能力和刚度衰变规律;以火灾下跨中挠度为评估指标,提出了针对钢-混凝土组合连续弯箱梁的抗火设计方法。研究结果表明:在对称火和结构荷载作用下,钢-混凝土组合连续弯箱梁外边缘挠度大于内边缘挠度,且荷载越大,火灾越严重,这一效应越显著;在油罐车等过火面积较大的火灾作用下,刚度较极限承载能力衰退更快,与常温下的钢-混凝土组合连续弯箱梁极限承载能力和刚度相比,边跨受火16 min时极限承载能力和刚度分别降低至29%和14%,中跨受火28 min时极限承载能力和刚度分别降低至31%和22%;在钢-混凝土组合连续弯箱梁抗火设计中,应首先提高外侧钢箱梁在火灾下的刚度,增多和加宽外侧钢箱梁底板纵向加劲肋可使边跨受火20 min后内外侧钢箱梁跨中挠度差分别减小23%和30%,中跨受火32 min后内外侧钢箱梁跨中挠度差分别减小22%和27%。

     

  • 图  1  钢-混凝土组合连续弯箱梁构造

    Figure  1.  Structure of steel-concrete composite continuous curved box girder

    图  2  钢-混凝土组合连续弯箱梁热传递

    Figure  2.  Heat transfer of steel-concrete composite continuous curved box girder

    图  3  有限元模型

    Figure  3.  Finite element model

    图  4  试验梁温度和跨中挠度实测值与计算值比较

    Figure  4.  Comparison of measured and calculated temperatures and mid-span deflections of test girder

    图  5  钢-混凝土组合连续弯箱梁截面温度场

    Figure  5.  Cross-sectional temperature field of steel-concrete composite continuous curved box girder

    图  6  钢-混凝土组合连续弯箱梁时间-温度曲线

    Figure  6.  Time-temperature curves of steel-concrete composite continuous curved box girder

    图  7  火灾升温曲线

    Figure  7.  Temperature-rise curves of fire

    图  8  常温下钢-混凝土组合连续弯箱梁结构响应

    Figure  8.  Structure responses of steel-concrete composite continuous curved box girder under normal temperature

    图  9  火灾下钢-混凝土组合连续弯箱梁结构响应

    Figure  9.  Structure responses of steel-concrete composite continuous curved box girder under fire

    图  10  不同火灾下钢-混凝土组合连续弯箱梁跨中挠度

    Figure  10.  Mid-span deflections of steel-concrete composite continuous curved box girder under different fires

    图  11  不同荷载水平下钢-混凝土组合连续弯箱梁跨中挠度

    Figure  11.  Mid-span deflections of steel-concrete composite continuous curved box girder under different load levels

    图  12  不同受火时间下钢-混凝土组合连续弯箱梁荷载-位移曲线

    Figure  12.  Load-deflection curves of steel-concrete composite continuous curved box girder under different fire exposure times

    图  13  钢-混凝土组合连续弯箱梁极限承载能力衰退曲线

    Figure  13.  Degradation curves of ultimate bearing capacity ofsteel-concrete composite continuous curved box girder

    图  14  钢-混组合连续弯箱梁刚度衰退曲线

    Figure  14.  Degradation curves of stiffness of steel-concrete composite continuous curved box girder

    图  15  加宽与增多底板加劲肋后钢-混凝土组合连续弯箱梁跨中挠度

    Figure  15.  Mid-span deflections of steel-concrete composite continuous curved box girder after widening and increasing stiffeners of bottom plate

    表  1  分析参数

    Table  1.   Analysis parameters

    纵向受火位置 火灾强度 荷载水平/%
    边跨跨中 ISO834 30
    HC 20
    30
    40
    中跨跨中 ISO834 30
    HC 20
    30
    40
    下载: 导出CSV
  • [1] GARLOCK M, PAYA-ZAFORTEZA I, KODUR V K, et al. Fire hazard in bridges: review, assessment and repair strategies[J]. Engineering Structures, 2012, 35: 89-98. doi: 10.1016/j.engstruct.2011.11.002
    [2] SONG Chao-jie, ZHANG Gang, HOU Wei, et al. Performance of prestressed concrete box bridge girders under hydrocarbon fire exposure[J]. Advances in Structural Engineering, 2020, 23(8): 1521-1533. doi: 10.1177/1369433219898102
    [3] PERIS-SAYOL G, PAYA-ZAFORTEZA I, ALOS-MOYA J, et al. Analysis of the influence of geometric, modeling and environmental parameters on the fire response of steel bridges subjected to realistic fire scenarios[J]. Computers and Structures, 2015, 158: 333-345. doi: 10.1016/j.compstruc.2015.06.003
    [4] 张岗, 贺拴海, 侯炜, 等. 预应力混凝土桥梁抗火研究综述[J]. 长安大学学报(自然科学版), 2018, 38(6): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201806002.htm

    ZHANG Gang, HE Shuan-hai, HOU Wei, et al. Review on fire resistance of prestressed-concrete bridge[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(6): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201806002.htm
    [5] 李国强, 王卫永. 钢结构抗火安全研究现状与发展趋势[J]. 土木工程学报, 2017, 50(12): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201712002.htm

    LI Guo-qiang, WANG Wei-yong. State-of-the-art and development trend of fire safety research on steel structures[J]. China Civil Engineering Journal, 2017, 50(12): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201712002.htm
    [6] 秦智源, 张岗, 王高峰, 等. 油罐车火灾下钢-混组合连续箱梁性能及失效机理研究[J]. 长安大学学报(自然科学版), 2018, 38(6): 98-108. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201806012.htm

    QIN Zhi-yuan, ZHANG Gang, WANG Gao-feng, et al. Performance failure of steel-concrete composite continuous box girder exposed to tanker fire[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(6): 98-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201806012.htm
    [7] 张岗, 宗如欢, 黄侨, 等. 油罐车火灾致简支钢-混组合箱梁抗弯承载力衰变机理[J]. 长安大学学报(自然科学版), 2018, 38(6): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201806005.htm

    ZHANG Gang, ZONG Ru-huan, HUANG Qiao, et al. Degradation mechanism of simply supported steel-concrete composite box girder under tanker fire condition[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(6): 31-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201806005.htm
    [8] 宋超杰, 张岗, 秦智源, 等. 钢板组合连续桥梁的耐火极限[J]. 长安大学学报(自然科学版), 2019, 39(6): 89-98. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201906011.htm

    SONG Chao-jie, ZHANG Gang, QIN Zhi-yuan, et al. Fire resistance of steel-concrete composite continuous bridge girder[J]. Journal of Chang'an University (Natural Science Edition), 2019, 39(6): 89-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201906011.htm
    [9] 康俊涛, 王伟. 火灾下大跨度钢桁架拱桥结构性能分析[J]. 哈尔滨工业大学学报, 2020, 52(9): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202009012.htm

    KANG Jun-tao, WANG Wei. Analysis of structural performance of long-span steel trussed arch bridge exposed to fire[J]. Journal of Harbin Institute of Technology, 2020, 52(9): 77-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202009012.htm
    [10] 陈适才, 张磊, 张洋, 等. 局部火灾引起的整体钢结构初始破坏机理与倒塌机制[J]. 建筑结构学报, 2015, 36(2): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201502015.htm

    CHEN Shi-cai, ZHANG Lei, ZHANG Yang, et al. Initial failure and collapse mechanism of steel frame structures under localized fire[J]. Journal of Building Structures, 2015, 36(2): 115-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201502015.htm
    [11] NASER M Z, KODUR V K. Comparative fire behavior of composite girders under flexural and shear loading[J]. Thin-Walled Structures, 2017, 116: 82-90. http://www.sciencedirect.com/science/article/pii/S0263823117302537
    [12] ALOS-MOYA J, PAYA-ZAFORTEZA I, HOSPITALER A, et al. Valencia bridge fire tests: experimental study of a composite bridge under fire[J]. Journal of Constructional Steel Research, 2017, 138: 538-554. http://www.sciencedirect.com/science/article/pii/S0143974X17304881
    [13] AZIZ E M, KODUR V K, GLASSMAN J D, et al. Behavior of steel bridge girders under fire conditions[J]. Journal of Constructional Steel Research, 2015, 106: 11-22. http://www.sciencedirect.com/science/article/pii/S0143974X14003253
    [14] QUIEL S E, YOKOYAMA T, BREGMAN L S, et al. A streamlined framework for calculating the response of steel-supported bridges to open-air tanker truck fires[J]. Fire Safety Journal, 2015, 73: 63-75. http://www.sciencedirect.com/science/article/pii/S0379711215000405
    [15] ALOS-MOYA J, PAYA-ZAFORTEZA I, GARLOCK M E M, et al. Analysis of a bridge failure due to fire using computational fluid dynamics and finite element models[J]. Engineering Structures, 2014, 68: 96-110. http://www.sciencedirect.com/science/article/pii/S0141029614001151
    [16] ZHANG Gang, KODUR V K, SONG Chao-jie, et al. A numerical model for evaluating fire performance of composite box bridge girders[J]. Journal of Constructional Steel Research, 2020, 165: 105823. http://www.sciencedirect.com/science/article/pii/S0143974X1930759X
    [17] NAHID M N, SOTELINO E D, LATTIMER B Y. Thermo-structural response of highway bridge structures with tub girders and plate girders[J]. Journal of Bridge Engineering, 2017, 22(10): 04017069. http://www.researchgate.net/publication/320150406_Thermo-Structural_Response_of_Highway_Bridge_Structures_with_Tub_Girders_and_Plate_Girders
    [18] HOZJAN T, SAJE M, SRP I S, et al. Fire analysis of steel-concrete composite beam with interlayer slip[J]. Computers and Structures, 2011, 89(1/2): 189-200. http://www.sciencedirect.com/science/article/pii/S004579491000218X
    [19] HU Jia-yu, USMANI A, SANAD A, et al. Fire resistance of composite steel and concrete highway bridges[J]. Journal of Constructional Steel Research, 2018, 148: 707-719. http://www.sciencedirect.com/science/article/pii/S0143974X1730771X
    [20] 周焕廷, 郑志远, 郝聪龙, 等. 预应力连续钢-混组合梁抗火性能[J]. 长安大学学报(自然科学版), 2018, 38(6): 40-48. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201806006.htm

    ZHOU Huan-ting, ZHENG Zhi-yuan, HAO Cong-long, et al. Fire resistance of prestressed continuous steel-concrete composite beams[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(6): 40-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201806006.htm
    [21] 周焕廷, 聂河斌, 张健, 等. 预应力简支钢梁高温性能试验研究[J]. 中国公路学报, 2016, 29(8): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201608008.htm

    ZHOU Huan-ting, NIE He-bin, ZHNAG Jian, et al. Experimental study on performance of simply supported prestressed steel beams at high temperature[J]. China Journal of Highway and Transport, 2016, 29(8): 59-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201608008.htm
    [22] 蒋翔, 童根树, 张磊. 耐火钢-混凝土简支组合梁抗火性能[J]. 哈尔滨工业大学学报, 2017, 49(12): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201712009.htm

    JIANG Xiang, TONG Gen-shu, ZHNAG Lei. Fire-resistance performance of simply supported fire-resistant steel-concrete composite beams[J]. Journal of Harbin Institute of Technology, 2017, 49(12): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201712009.htm
    [23] ALBERO V, SAURA H, HOSPITALER A, et al. Optimal design of prestressed concrete hollow core slabs taking into account its fire resistance[J]. Advances in Engineering Software, 2018, 122: 81-92. http://www.sciencedirect.com/science/article/pii/S0965997818302163
    [24] KODUR V K, AZIZ E M, NASER M Z. Strategies for enhancing fire performance of steel bridges[J]. Engineering Structures, 2017, 131: 446-458. http://www.sciencedirect.com/science/article/pii/S0141029616309956
    [25] KODUR V K, NASER M Z. Designing steel bridges for fire safety[J]. Journal of Constructional Steel Research, 2019, 156: 46-53. http://www.sciencedirect.com/science/article/pii/S0143974X18305066
    [26] DU Yong, SUN Ya-kai, JIANG Jian, et al. Effect of cavity radiation on transient temperature distribution in steel cables under ISO834 fire[J]. Fire Safety Journal, 2019, 104: 79-89. http://www.sciencedirect.com/science/article/pii/S0379711218302078
    [27] KOTSOVINOS P, ATALIOTI A, MCSWINEY N, et al. Analysis of the thermomechanical response of structural cables subject to fire[J]. Fire Technology, 2020, 56(2): 515-543.
    [28] 刘永健, 刘江. 钢-混凝土组合梁桥温度作用与效应综述[J]. 交通运输工程学报, 2020, 20(1): 42-59. http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=202001003

    LIU Yong-jian, LIU Jiang. Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 42-59. (in Chinese) http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=202001003
    [29] BS EN 1991-1-2, Eurocode 1—actions on structures—part 1-2: general actions—actions on structures exposed to fire[S].
    [30] BS EN 1994-1-2, Eurocode 4—design of composite steel and concrete structures—part 1-2: general rules—structural fire design[S].
    [31] WEI Ya, AU F T K, LI Jing, et al. Effects of transient creep strain on post-tensioned concrete slabs in fire[J]. Magazine of Concrete Research, 2017, 69(7): 337-346. http://www.researchgate.net/publication/293799451_Effects_of_transient_creep_strain_on_post-tensioned_concrete_slabs_in_fire
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  618
  • HTML全文浏览量:  294
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回