留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时速600公里磁浮列车隧道初始压缩波洞内传播特征和洞口微气压波特征

梅元贵 李绵辉 胡啸 杜俊涛

梅元贵, 李绵辉, 胡啸, 杜俊涛. 时速600公里磁浮列车隧道初始压缩波洞内传播特征和洞口微气压波特征[J]. 交通运输工程学报, 2021, 21(4): 150-162. doi: 10.19818/j.cnki.1671-1637.2021.04.011
引用本文: 梅元贵, 李绵辉, 胡啸, 杜俊涛. 时速600公里磁浮列车隧道初始压缩波洞内传播特征和洞口微气压波特征[J]. 交通运输工程学报, 2021, 21(4): 150-162. doi: 10.19818/j.cnki.1671-1637.2021.04.011
MEI Yuan-gui, LI Mian-hui, HU Xiao, DU Jun-tao. Propagation characteristics of initial compression wave in cave and portal micro-pressure waves characteristics when 600 km·h-1 maglev train entering tunnels[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 150-162. doi: 10.19818/j.cnki.1671-1637.2021.04.011
Citation: MEI Yuan-gui, LI Mian-hui, HU Xiao, DU Jun-tao. Propagation characteristics of initial compression wave in cave and portal micro-pressure waves characteristics when 600 km·h-1 maglev train entering tunnels[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 150-162. doi: 10.19818/j.cnki.1671-1637.2021.04.011

时速600公里磁浮列车隧道初始压缩波洞内传播特征和洞口微气压波特征

doi: 10.19818/j.cnki.1671-1637.2021.04.011
基金项目: 

国家重点研发计划项目 2016YFB1200602-39

详细信息
    作者简介:

    梅元贵(1964-),男,河南荥阳人,兰州交通大学教授,工学博士,从事轨道交通空气动力学和应用研究

  • 中图分类号: U292.917

Propagation characteristics of initial compression wave in cave and portal micro-pressure waves characteristics when 600 km·h-1 maglev train entering tunnels

Funds: 

National Key Research and Development Program of China 2016YFB1200602-39

More Information
  • 摘要: 基于三维数值模拟方法,采用一维可压缩非定常不等熵流动模型和改进广义黎曼变量特征线方法,在隧道入口端未设置以及设置开口型缓冲结构条件下,分别研究了初始压缩波在隧道洞内的传播及洞口(默认为出口)的微气压波特性。研究结果表明:隧道入口设置开口型缓冲结构与无缓冲结构相比,其产生的初始压缩波的最大压力梯度下降了67.56%;初始压缩波在隧道内的传播过程中存在先激化后衰减的过程,其中未设置缓冲结构和设置开口型缓冲结构的临界长度分别为2和6 km,而满足微气压波控制标准的临界隧道长度分别为33和34 km;虽然开口型缓冲结构可较大幅度降低初始压缩波的最大压力梯度,但是对于长大隧道而言,由于传播过程中压缩波不断激化,开口型缓冲结构实际上对减缓微气压波的作用存在较大幅度的弱化,建议还应采取如竖井等工程措施以减缓激化;缓冲结构对不同隧道长度的洞口内压缩波的最大压力梯度的影响不同,所以需要结合不同类型缓冲结构和长度等因素来确定对应的最佳隧道长度匹配关系。

     

  • 图  1  高速磁浮列车气动几何模型

    Figure  1.  Aerodynamic geometry model of high-speed maglev train

    图  2  双线隧道截面结构

    Figure  2.  Cross section structure of double-track tunnel

    图  3  开口型缓冲结构模型

    Figure  3.  Opening buffer structure model

    图  4  隧道内3 209 m压缩波验证

    Figure  4.  Verification of 3 209 m compression wave in tunnel

    图  5  列车进入隧道过程压力分布特征

    Figure  5.  Pressure distribution characteristics when train entering tunnel

    图  6  初始压缩波的产生机理

    Figure  6.  Generation mechanism of initial compression wave

    图  7  隧道入口未设置和设置开口型缓冲结构时初始压缩波及压力梯度波形

    Figure  7.  Waveforms of initial compression wave and pressure gradient when tunnel entrance without and with opening buffer structure

    图  8  隧道入口内不同时刻压力分布

    Figure  8.  Pressure distributions at different times in tunnel entrance

    图  9  无缓冲结构隧道长度为2 km内压缩波波形

    Figure  9.  Waveforms of compression wave within 2 km of non-buffer tunnel length

    图  10  无缓冲结构隧道长度为2 km内压缩波压力梯度波形

    Figure  10.  Pressure gradient waveforms of compression wave within 2 km of non-buffer tunnel length

    图  11  无缓冲结构隧道长度为15 km的2~15 km范围压缩波波形

    Figure  11.  Compression wave waveforms in range of 2-15 km of non-buffer tunnel with a length of 15 km

    图  12  无缓冲结构隧道长度为15 km的2~15 km范围压缩波压力梯度波形

    Figure  12.  Pressure gradient waveforms of compression wave in range of 2-15 km of non-buffer tunnel with a length of 15 km

    图  13  有缓冲结构隧道长度为15 km的6 km范围压缩波波形

    Figure  13.  Compression wave waveforms in 6 km range of opening buffer tunnel with a length of 15 km

    图  14  有缓冲结构隧道长度为15 km的6 km范围压缩波压力梯度波形

    Figure  14.  Pressure gradient waveforms of compression wave in 6 km range of opening buffer tunnel with a length of 15 km

    图  15  有缓冲结构隧道长度为15 km的6~15 km范围压缩波波形

    Figure  15.  Compression wave waveforms in range of 6-15 km of opening buffer tunnel with a length of 15 km

    图  16  有缓冲结构隧道长度为15 km的6~15 km范围压缩波压力梯度波形

    Figure  16.  Pressure gradient waveforms of compression wave in range of 6-15 km of opening buffer tunnel with a length of 15 km

    图  17  隧道内出口端最大压力梯度与隧道长度关系

    Figure  17.  Relationship between maximum pressure gradient of tunnel end and tunnel length

    图  18  不同隧道长度缓冲结构对最大压力梯度的缓解

    Figure  18.  Mitigation of maximum pressure gradient by different tunnel length buffer structures

    图  19  隧道入口无缓冲不同位置微气压波最值对比

    Figure  19.  Comparison of maximum micro-pressure waves at different positions of tunnel entrance with non-buffer structure

    图  20  隧道入口有缓冲不同位置微气压波最值对比

    Figure  20.  Comparison of maximum micro-pressure waves at different positions of tunnel entrance with opening buffer structure

    图  21  隧道入口无缓冲立体角与微气压波最值关系

    Figure  21.  Relationship of maximum micro-pressure waves and solid angles at tunnel entrance with non-buffer structure

    图  22  隧道入口有缓冲立体角与微气压波最值关系

    Figure  22.  Relationship of maximum micro-pressure waves and solid angles at tunnel entrance with opening buffer structure

    图  23  无缓冲结构时隧道长度对微气压波的影响

    Figure  23.  Influence of tunnel length on micro-pressure wave of tunnel with non-buffer structure

    图  24  有缓冲结构时隧道长度对微气压波的影响

    Figure  24.  Influence of tunnel length on micro-pressure wave of tunnel with opening buffer structure

    表  1  隧道及列车计算参数

    Table  1.   Tunnel and train calculation parameters

    隧道参数 净空面积/m2 140
    壁面沿程摩擦因数 0.005
    净空面周长/m 60
    长度/km 0.1~40
    列车参数 横截面积/m2 10
    速度/(km·h-1) 600
    鼻长(Lno)/m 16
    长度/m 130.7
    下载: 导出CSV
  • [1] PETERS J L. Aerodynamics of very high speed trains and maglev vehicles: state of art and future potential[J]. International Journal of Vehicle Design, 1983(3): 308-341.
    [2] SCHETZ J A. Aerodynamics of high-speed trains[J]. Annual Review of Fluid Mechanics, 2001, 33(1): 371-414. doi: 10.1146/annurev.fluid.33.1.371
    [3] 李明水, 雷波, 林国斌, 等. 磁浮高速会车压力波和列车风的实测研究[J]. 空气动力学学报, 2006, 24(2): 209-212. doi: 10.3969/j.issn.0258-1825.2006.02.013

    LI Ming-shui, LEI Bo, LIN Guo-bin, et al. Field measurement of passing pressure and train induced airflow speed on high speed maglev vehicles[J]. Acta Aerodynamica Sinica, 2006, 24(2): 209-212. (in Chinese) doi: 10.3969/j.issn.0258-1825.2006.02.013
    [4] GAO Ding-gang, NI Fei, LIN Guo-bin, et al. Aerodynamic analysis of pressure wave of high-speed maglev vehicle crossing: modeling and calculation[J]. Energies, 2019, DOI: 10.3390/en12193770.
    [5] HUANG Sha, LI Zhi-wei, YANG Ming-zhi. Aerodynamics of high-speed maglev trains passing each other in open air[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 188: 151-160. doi: 10.1016/j.jweia.2019.02.025
    [6] YOSHIDA H. Magnetic levitated railway in Japan—Yamanashi experimental track[J]. Foreign Railway Vehicles, 2000(4): 28-30. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GWTD200004008.htm
    [7] YAMAMOTO K, KOZUMA Y, TAGAWA N, et al. Improving maglev vehicle characteristics for the Yamanashi test line[J]. Quarterly Report of RTRI, 2004, 45(1): 7-12. doi: 10.2219/rtriqr.45.7
    [8] HONDA A, TAKAHASHI K, NOZAWA K, et al. Distortion of compression wave propagating through a long tunnel of high-speed railway and reduction of micro-pressure wave using a portal hood[J]. Journal of Japan Society of Civil Engineers, 2015, 71(1): 128-138. http://adsabs.harvard.edu/abs/2015JSCSE..71..128H
    [9] HONDA A, TAKAHASHI K, NOZAWA K, et al. Proposal of a porous hood for a high-speed railway tunnel based on an evaluation of a micro-pressure wave[J]. Journal of Japan Society of Civil Engineers, 2015, 71(3): 327-340. http://www.researchgate.net/publication/283202754_PROPOSAL_OF_A_POROUS_HOOD_FOR_A_HIGH-SPEED_RAILWAY_TUNNEL_BASED_ON_AN_EVALUATION_Of_A_MICRO-PRESSURE_WAVE
    [10] 顾红生, 赵毅山. 磁悬浮列车在隧道内影响活塞风速的因素[J]. 同济大学学报(自然科学版), 2003, 31(3): 324-328. doi: 10.3321/j.issn:0253-374X.2003.03.016

    GU Hong-sheng, ZHAO Yi-shan. Effects on piston wind velocity of maglev in tunnel[J]. Journal of Tongji University (Natural Science), 2003, 31(3): 324-328. (in Chinese) doi: 10.3321/j.issn:0253-374X.2003.03.016
    [11] 王兆祺, 赵毅山. 磁悬浮列车通过隧道时空气阻力的计算方法[J]. 同济大学学报(自然科学版), 2003, 31(10): 1183-1187. doi: 10.3321/j.issn:0253-374X.2003.10.010

    WANG Zhao-qi, ZHAO Yi-shan. Calculating method on aerodynamic drags of maglev in passing tunnel[J]. Journal of Tongji University (Natural Science), 2003, 31(10): 1183-1187. (in Chinese) doi: 10.3321/j.issn:0253-374X.2003.10.010
    [12] 张光鹏, 雷波, 李琼. 磁浮列车气密性能对隧道净空面积的影响[J]. 铁道学报, 2005, 27(2): 126-129. doi: 10.3321/j.issn:1001-8360.2005.02.023

    ZHANG Guang-peng, LEI Bo, LI Qiong. Influence of maglev train sealing characters on the tunnel cross section area[J]. Journal of the China Railway Society, 2005, 27(2): 126-129. (in Chinese) doi: 10.3321/j.issn:1001-8360.2005.02.023
    [13] 张兆杰, 高波, 王英学. 磁悬浮列车穿越隧道引起的压力波传播规律研究[J]. 石家庄铁道学院学报, 2005, 18(4): 11-14. doi: 10.3969/j.issn.2095-0373.2005.04.003

    ZHANG Zhao-jie, GAO Bo, WANG Ying-xue. Study of propagation pattern of pressure waves produced by magnetically levitated train passing a tunnel[J]. Journal of Shijiazhuang Railway Institute, 2005, 18(4): 11-14. (in Chinese) doi: 10.3969/j.issn.2095-0373.2005.04.003
    [14] OZAWA S. Studies of micro-pressure wave radiated from a tunnel exit[J]. Railway Technical Research Report, 1979(1121): 1-92. http://ci.nii.ac.jp/naid/10017558015
    [15] HOWE M S. Review of the theory of the compression wave generated when a high-speed train enters a tunnel[J]. Journal of Rail and Rapid Transit, 1999, 213(2): 89-104. doi: 10.1243/0954409991531056
    [16] YUN S H, NAM S W, KIM S W. Prediction method and characteristics of micro-pressure wave on high-speed railway tunnel[J]. Journal of the Korean Society for Railway, 2015, 18(1): 8-14. doi: 10.7782/JKSR.2015.18.1.8
    [17] FUKUDA T, OZAWA S, ⅡDA M, et al. Distortion of the compression wave propagating through a very long tunnel with slab tracks[J]. Proceedings of Railway Technical Research Institute (B), 2005, 71: 2248-2255. http://www.researchgate.net/publication/315131225_Distortion_of_the_Compression_Wave_Propagating_Through_a_Very_Long_Tunnel_with_Slab_Tracks
    [18] NAKAMURA S, SASA D, AOKI T. Attenuation and distortion of compression waves propagating in very long tube[J]. Journal of Thermal Science, 2011, 20(1): 55-59. http://www.springerlink.com/content/40pk62lq0036741l/
    [19] TANAKA T, AOKI T. Characteristics of unsteady boundary layer induced by the compression wave propagating in a tunnel[J]. Open Journal of Fluid Dynamics, 2012, 2(4): 257-263. doi: 10.4236/ojfd.2012.24A030
    [20] FUKUDA T, NAKAMURA S, MIYACHI T, et al. Countermeasure for reducing micro-pressure waves by spreading ballast on the slab-track in the tunnel[J]. Quarterly Report of RTRI, 2018, 59(2): 121-127. doi: 10.2219/rtriqr.59.2_121
    [21] MIYACHI T. Acoustic model of micro-pressure wave emission from a high-speed train tunnel[J]. Journal of Sound and Vibration, 2017, 391: 127-152. doi: 10.1016/j.jsv.2016.09.031
    [22] 梅元贵, 许建林, 耿烽, 等. 基于无限大障板圆形活塞辐射原理的隧道微压波计算方法[J]. 铁道学报, 2006, 28(4): 74-78. doi: 10.3321/j.issn:1001-8360.2006.04.015

    MEI Yuan-gui, XU Jian-lin, GENG Feng, et al. Numerical investigation of micro pressure waves radiated from a tunnel exit based on the model of radiating of circular piston in the infinite plat[J]. Journal of the China Railway Society, 2006, 28(4): 74-78. (in Chinese) doi: 10.3321/j.issn:1001-8360.2006.04.015
    [23] 刘洪涛, 梅元贵, 刘坤. 高速铁路隧道长度对压缩波波前变形的影响研究[J]. 现代隧道技术, 2007, 44(3): 6-10. doi: 10.3969/j.issn.1009-6582.2007.03.002

    LIU Hong-tao, MEI Yuan-gui, LIU Kun. Effect of high-speed railway tunnel length on distortion of the wave front of compression wave[J]. Modern Tunnelling Technology, 2007, 44(3): 6-10. (in Chinese) doi: 10.3969/j.issn.1009-6582.2007.03.002
    [24] 贾永兴, 罗禄林, 梅元贵, 等. 瞬态摩擦对高速铁路隧道初始压缩波传播的影响[J]. 铁道科学与工程学报, 2015, 12(4): 755-761. doi: 10.3969/j.issn.1672-7029.2015.04.007

    JIA Yong-xing, LUO Lu-lin, MEI Yuan-gui, et al. Effect of transient friction of tunnel wall on the compression wave in high-speed railway tunnel[J]. Journal of Railway Science and Engineering, 2015, 12(4): 755-761. (in Chinese) doi: 10.3969/j.issn.1672-7029.2015.04.007
    [25] 王宏林, 雷波, 毕海权. 压缩波惯性作用对其波形演变的影响[J]. 西南交通大学学报, 2015, 50(1): 118-123. doi: 10.3969/j.issn.0258-2724.2015.01.017

    WANG Hong-lin, LEI Bo, BI Hai-quan. Influence of inertial effect of compression wave on waveform evolution[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 118-123. (in Chinese) doi: 10.3969/j.issn.0258-2724.2015.01.017
    [26] 吴剑, 史宪明, 万晓燕. 时速300~350 km高速铁路双线隧道微气压波激化作用及缓解措施研究[J]. 土木工程学报, 2017, 50(增2): 209-214. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2033.htm

    WU Jian, SHI Xian-ming, WAN Xiao-yan. Study on intensification and mitigation methods of micro pressure wave of double track tunnel in 300 to 350km/h high speed railway[J]. China Civil Engineering Journal, 2017, 50(S2): 209-214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2033.htm
    [27] ZHANG Lei, YANG Ming-zhi, LIANG Xi-feng, et al. Oblique tunnel portal effects on train and tunnel aerodynamics based on moving model tests[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 167: 128-139. doi: 10.1016/j.jweia.2017.04.018
    [28] ZHANG L, THUROW K, STOLL N, et al. Influence of the geometry of equal-transect oblique tunnel portal on compression wave and micro-pressure wave generated by high-speed trains entering tunnels[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 178: 1-17. doi: 10.1016/j.jweia.2018.05.003
    [29] 马辉, 吴剑, 高明忠, 等. 基于气动效应的特长隧道断面优化探讨[J]. 隧道建设, 2019, 39(9): 1412-1422. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201909008.htm

    MA Hui, WU Jian, GAO Ming-zhong, et al. Optimization of cross-section of extra-long tunnel based on aerodynamic effect[J]. Tunnel Construction, 2019, 39(9): 1412-1422. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201909008.htm
    [30] 刘金通, 李人宪. 高速铁路长隧道压缩波波前变形规律分析[J]. 计算力学学报, 2019, 36(3): 364-369. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201903011.htm

    LIU Jin-tong, LI Ren-xian. Deformation law of compression wavefront in long tunnel of high-speed railway[J]. Chinese Journal of Computational Mechanics, 2019, 36(3): 364-369. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201903011.htm
    [31] 刘金通, 李人宪. 高速铁路隧道出口微气压波声学特性计算分析[J]. 声学与振动, 2018, 6(2): 62-69.

    LIU Jin-tong, LI Ren-xian. Acoustic characteristics of micro-pressure wave at the high speed railway tunnel exit[J]. Open Journal of Acoustics and Vibration, 2018, 6(2): 62-69. (in Chinese)
    [32] 胡啸. 开口型缓冲结构减缓高速磁浮列车驶入隧道时洞内外压力波动特性研究[D]. 兰州: 兰州交通大学, 2019.

    HU Xiao. Study on the alleviation of hood with multiple windows on pressure fluctuation characteristics inside and outside the tunnel induced by high speed maglev train passing through the tunnel[D]. Lanzhou: Lanzhou Jiaotong University, 2019. (in Chinese)
    [33] 梅元贵, 赵汗冰, 陈大伟, 等. 时速600 km磁浮列车驶入隧道时初始压缩波特征的数值模拟[J]. 交通运输工程学报, 2020, 20(1): 120-131. http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=202001009

    MEI Yuan-gui, ZHAO Han-bing, CHEN Da-wei, et al. Numerical simulation of initial compression wave characteristics of 600 km·h-1 maglev train entering tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 120-131. (in Chinese) http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=202001009
  • 加载中
图(24) / 表(1)
计量
  • 文章访问数:  592
  • HTML全文浏览量:  229
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-28
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回