留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面微喷丸对CuNi2Si合金疲劳短裂纹行为影响

杨冰 冯博 李一帆 廖贞 张继旺 肖守讷 阳光武 朱涛

杨冰, 冯博, 李一帆, 廖贞, 张继旺, 肖守讷, 阳光武, 朱涛. 表面微喷丸对CuNi2Si合金疲劳短裂纹行为影响[J]. 交通运输工程学报, 2021, 21(4): 163-171. doi: 10.19818/j.cnki.1671-1637.2021.04.012
引用本文: 杨冰, 冯博, 李一帆, 廖贞, 张继旺, 肖守讷, 阳光武, 朱涛. 表面微喷丸对CuNi2Si合金疲劳短裂纹行为影响[J]. 交通运输工程学报, 2021, 21(4): 163-171. doi: 10.19818/j.cnki.1671-1637.2021.04.012
YANG Bin, FENG Bo, LI Yi-fan, LIAO Zhen, ZHANG Ji-wang, XIAO Shou-ne, YANG Guang-wu, ZHU Tao. Influence of surface micro shot peening on short fatigue crack behavior of CuNi2Si alloy[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 163-171. doi: 10.19818/j.cnki.1671-1637.2021.04.012
Citation: YANG Bin, FENG Bo, LI Yi-fan, LIAO Zhen, ZHANG Ji-wang, XIAO Shou-ne, YANG Guang-wu, ZHU Tao. Influence of surface micro shot peening on short fatigue crack behavior of CuNi2Si alloy[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 163-171. doi: 10.19818/j.cnki.1671-1637.2021.04.012

表面微喷丸对CuNi2Si合金疲劳短裂纹行为影响

doi: 10.19818/j.cnki.1671-1637.2021.04.012
基金项目: 

国家自然科学基金项目 51675446

国家自然科学基金项目 U1534209

详细信息
    作者简介:

    杨冰(1979-),男,湖南衡阳人,西南交通大学研究员,工学博士,从事车辆结构强度及材料疲劳与断裂研究

  • 中图分类号: U270.4

Influence of surface micro shot peening on short fatigue crack behavior of CuNi2Si alloy

Funds: 

National Natural Science Foundation of China 51675446

National Natural Science Foundation of China U1534209

More Information
  • 摘要: 在拉压载荷作用下,分别开展了CuNi2Si合金微喷丸前后漏斗型圆棒试样的疲劳短裂纹复型试验;试验在预先确定的一系列载荷循环周次中断,以使用醋酸纤维膜对试样表面进行复型,进而采用逆序观察法获取了短裂纹萌生与扩展相关数据。分析结果表明:2种试样疲劳裂纹均萌生于试样表面,裂纹扩展受微观组织影响呈现曲折性增长, 整体表现出初期增长缓慢,后期裂纹长度迅速增长至试样断裂的趋势, 失稳扩展临界尺度约为750.0 μm; 微喷丸处理可以使裂纹增长模式由以晶间为主转为以穿晶为主,微喷丸前后断口形貌表现出巨大差异,相对未喷丸试样,微喷丸试样裂纹萌生位置呈现较大的晶体平面,无明显晶粒特征,裂纹源区面积较小,在疲劳过程中产生的纤维条纹数量较多,瞬断区韧窝形貌更为明显; 经微喷丸处理后,试样平均疲劳寿命提高约31.5倍,裂纹萌生和缓慢扩展阶段占比从整体疲劳寿命的60%增加至80%,可知微喷丸处理对于疲劳寿命的大幅提高主要体现在短裂纹的萌生和稳定扩展阶段,而这种强化效果主要受表面有效应力、硬度、晶界数目的共同影响,但该强化效果对疲劳裂纹扩展后期影响不大。

     

  • 图  1  疲劳试样形状与尺寸(单位:mm)

    Figure  1.  Fatigue specimen shape and dimensions (unit: mm)

    图  2  三维表面形貌

    Figure  2.  Three dimensional surface morphologies

    图  3  UP-2试样复型照片

    Figure  3.  Replica photos of specimen UP-2

    图  4  MSP-1试样复型照片

    Figure  4.  Replica photos of specimen MSP-1

    图  5  UP试样断口形貌

    Figure  5.  Fracture morphology of UP specimen

    图  6  MSP试样断口形貌

    Figure  6.  Fracture morphology of MSP specimen

    图  7  裂纹长度随循环次数的变化曲线

    Figure  7.  Variation curves of crack length and cycle

    图  8  裂纹长度随寿命分数变化曲线

    Figure  8.  Variation curves of crack length and life fraction

    图  9  裂纹扩展率随裂纹长度变化

    Figure  9.  Relationships between crack growth rate and crack length

    图  10  裂尖形状假设

    Figure  10.  Hypothesis of crack tip shape

    图  11  裂纹扩展率随应力强度因子范围变化曲线

    Figure  11.  Variation curves between crack growth rates and stress intensity factors

    表  1  CuNi2Si合金化学成分质量百分比

    Table  1.   Quality percentages of chemical composition of CuNi2Si alloy %

    Cu 97.500 Si 0.482
    Fe 0.140 Sn 0.033
    Mn < 0.001 P 0.012
    Ni 1.750 Al 0.002
    Pb 0.001 Zn 0.026
    下载: 导出CSV

    表  2  试样表面微喷丸处理条件

    Table  2.   MSP treatment condition of sample surface

    丸粒尺寸/ μm 喷射压强/ MPa 喷射距离/ mm 弧高值(N型)/mm 覆盖率/ %
    40.0 0.4 100 0.12 > 200
    下载: 导出CSV

    表  3  试样疲劳寿命

    Table  3.   Fatigue lives of specimens

    试样 组别 疲劳寿命/次 寿命均值/次
    UP试样 UP-1 6 500 31 100
    UP-2 59 900
    UP-3 16 000
    UP-4 42 000
    MSP试样 MSP-1 122 400 979 300
    MSP-2 995 900
    MSP-3 542 800
    MSP-4 2 256 100
    下载: 导出CSV
  • [1] LEI Qian, XIAO Zhu, HU Wei-ping, et al. Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy[J]. Materials Science and Engineering: A, 2017, 697: 37-47. doi: 10.1016/j.msea.2017.05.001
    [2] MONZEN R, WATANABE C. Microstructure and mechanical properties of Cu-Ni-Si alloys[J]. Materials Science and Engineering: A, 2008, 483/484: 117-119. doi: 10.1016/j.msea.2006.12.163
    [3] LOCKYER S A, NOBLE F W. Fatigue of precipitate strengthened Cu-Ni-Si alloy[J]. Materials Science and Technology, 1999, 15(10): 1147-1153. doi: 10.1179/026708399101505194
    [4] LEI Qian, LI Zhou, HAN Liang, et al. Effect of aging time on the corrosion behavior of a Cu-Ni-Si alloy in 3.5 wt% NaCl solution[J]. Corrosion Houston Tx, 2016, 72(5): 615-627. doi: 10.5006/1884
    [5] TANG Xing-ying, WANG Shu-zhong, QIAN Li-li, et al. Corrosion behavior of nickel base alloys, stainless steel and titanium alloy in supercritical water containing chloride, phosphate and oxygen[J]. Chemical Engineering Research and Design, 2015, 100: 530-541. doi: 10.1016/j.cherd.2015.05.003
    [6] ZHAO X H, HAN Y, BAI Z Q, et al. The experiment research of corrosion behaviour about Ni-based alloys in simulant solution containing H 2S/CO 2[J]. Electrochimica Acta, 2011, 56(22): 7725-7731. doi: 10.1016/j.electacta.2011.05.116
    [7] 杨留有, 邵建方, 杨庆和. 关于高铁接触网定位线夹脱落问题的分析及建议[J]. 铁道机车车辆, 2014, 34(3): 141-144. doi: 10.3969/j.issn.1008-7842.2014.03.35

    YANG Liu-you, SHAO Jian-fang, YANG Qing-he. Analysis and recommendations for high-speed rail catenary positioning clamp shedding problem[J]. Railway Locomotive and CAR, 2014, 34(3): 141-144. (in Chinese) doi: 10.3969/j.issn.1008-7842.2014.03.35
    [8] GŁUCHOWSKI W, RDZAWSKI Z, SOBOTA J, et al. Effect of the combined heat treatment and severe plastc deformation on the microstructure of CuNiSi alloy[J]. Archives of Metallurgy and Materials, 2016, 61(2): 1207-1214. doi: 10.1515/amm-2016-0200
    [9] LEI Qian, LI Zhou, GAO Yang, et al. Microstructure and mechanical properties of a high strength Cu-Ni-Si alloy treated by combined aging processes[J]. Journal of Alloys and Compounds, 2017, 695: 2413-2423. doi: 10.1016/j.jallcom.2016.11.137
    [10] TAN De-qiang, MO Ji-liang, PENG Jin-fang, et al. Research and prospect on high-speed catenary component failure[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 610-619. http://www.researchgate.net/publication/327673361_Research_and_Prospect_on_High-Speed_Catenary_Component_Failure
    [11] ATAPEK S H, PANTELAKIS S G, POLAT S. Fractographical analysis of fatigue failed Cu-2.55Ni-0.55Si alloy[J]. Theoretical and Applied Fracture Mechanics, 2016, 83: 60-66. doi: 10.1016/j.tafmec.2015.12.015
    [12] SUN Z, LAITEM C, VINCENT A. Dynamic embrittlement during fatigue of a Cu-Ni-Si alloy[J]. Materials Science and Engineering: A, 2011, 528(19/20): 6334-6337. http://www.sciencedirect.com/science/article/pii/S0921509311005016
    [13] LOCKYER S A, NOBLE F W. Fatigue of precipitate strengthened Cu-Ni-Si alloy[J]. Materials Science and Technology, 1999, 15(10): 1147-1153. doi: 10.1179/026708399101505194
    [14] GOTO M, HAN S Z, LIM S H, et al. Role of microstructure on initiation and propagation of fatigue cracks in precipitate strengthened Cu-Ni-Si alloy[J]. International Journal of Fatigue, 2016, 87: 15-21. doi: 10.1016/j.ijfatigue.2016.01.004
    [15] DELBOVE M, VOGT J B, BOUQUEREL J, et al. Low cycle fatigue behaviour of a precipitation hardened Cu-Ni-Si alloy[J]. International Journal of Fatigue, 2016, 92: 313-320. doi: 10.1016/j.ijfatigue.2016.07.019
    [16] 王华强, 吴明泽, 张继旺, 等. 预冷变形对Cu-Ni-Si铜合金疲劳性能和破坏行为影响研究[J]. 实验力学, 2018, 33(6): 877-884. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201806006.htm

    WANG Hua-qiang, WU Ming-ze, ZHANG Ji-wang, et al. On the effect of precooling deformation on fatigue performance and failure behavior of Cu-Ni-Si alloy[J]. Journal of Experimental Mechanics, 2018, 33(6): 877-884. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201806006.htm
    [17] YANG Bing, WU Ming-ze, LI Xing, et al. Effects of cold working and corrosion on fatigue properties and fracture behaviors of precipitate strengthened Cu-Ni-Si alloy[J]. International Journal of Fatigue, 2018, 116: 118-127. doi: 10.1016/j.ijfatigue.2018.06.017
    [18] ZHANG Ji-wang, LI Xing, YANG Bing, et al. Effect of micro-shot peening on fatigue properties of precipitate strengthened Cu-Ni-Si alloy in air and in salt atmosphere[J]. Surface and Coatings Technology, 2019, 359: 16-23. doi: 10.1016/j.surfcoat.2018.12.035
    [19] 刘宇轩, 吴圣川, 李存海, 等. 轴箱内置型铁路车轴疲劳性能与寿命评估[J]. 交通运输工程学报, 2019, 19(3): 100-108. http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201903011

    LIU Yu-xuan, WU Sheng-chuan, LI Cun-hai, et al. Fatigue performance and life assessment of railway axle with inside axle box[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 100-108. (in Chinese) http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201903011
    [20] QIN Ya-hang, YANG Bing, FENG Bo, et al. Effect of periodic overloads on short fatigue crack behavior in CuNi 2Si alloy under rotating bending load[J]. Metals—Open Access Metallurgy Journal, 2020, 10(9): 1267. http://www.researchgate.net/publication/345245026_Effect_of_Periodic_Overloads_on_Short_Fatigue_Crack_Behavior_in_CuNi2Si_Alloy_under_Rotating_Bending_Load
    [21] YANG Bing, LI Yi-fan, QIN Ya-hang, et al. Fatigue crack growth behavior of precipitate-strengthened CuNi 2Si alloy under different loading modes[J]. Materials, 2020, 2228(13): 1-14. http://www.researchgate.net/publication/341332619_Fatigue_Crack_Growth_Behaviour_of_Precipitate-Strengthened_CuNi2Si_Alloy_under_Different_Loading_Modes
    [22] PANG H T, REED P A S. Effects of microstructure on room temperature fatigue crack initiation and short crack propagation in Udimet 720Li Ni-base superalloy[J]. International Journal of Fatigue, 2008, 30(10/11): 2009-2020. http://www.sciencedirect.com/science/article/pii/S0142112308000042
    [23] YANG Bing, ZHAO Yong-xiang. Experimental research on dominant effective short fatigue crack behavior for railway LZ50 axle steel[J]. International Journal of Fatigue, 2012, 35(1): 71-78. doi: 10.1016/j.ijfatigue.2010.11.012
    [24] 杨冰, 廖贞, 马佰全, 等. 两种加载频率下LZ50车轴钢疲劳短裂纹行为对比[J]. 交通运输工程学报, 2017, 17(6): 46-55. http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201706006

    YANG Bing, LIAO Zhen, MA Bai-quan, et al. Comparison of short fatigue crack behaviors for LZ50 axle steel under two loading frequencies[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 46-55. (in Chinese) http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201706006
    [25] ZHAO Yong-xiang, YANG Bing, ZHANG Wei-hua. A short fatigue crack growth law for 1Cr18Ni9Ti weld metal[J]. Key Engineering Materials, 2006, 324/325: 571-578. doi: 10.4028/www.scientific.net/KEM.324-325.571
    [26] 张继旺, 鲁连涛, 张卫华. 微粒子喷丸中碳钢疲劳性能分析[J]. 金属学报, 2009, 45(11): 1378-1383. doi: 10.3321/j.issn:0412-1961.2009.11.017

    ZHANG Ji-wang, LU Lian-tao, ZHANG Wei-hua. Analysis on fatigue property of microshot peened medium carbon steel[J]. Acta Metallurgica Sinica, 2009, 45(11): 1378-1383. (in Chinese) doi: 10.3321/j.issn:0412-1961.2009.11.017
    [27] DENG Guo-jian, TU Shan-tung, ZHANG Xian-cheng, et al. Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169[J]. Engineering Fracture Mechanics, 2015, 134: 433-450. doi: 10.1016/j.engfracmech.2015.01.002
    [28] MURAKAMI Y, ENDO M. Effects of defects, inclusions and inhomogeneities on fatigue strength[J]. International Journal of Fatigue, 1994, 16(3): 163-182. doi: 10.1016/0142-1123(94)90001-9
    [29] LORENZINO P, BUFFIERE J Y, VERDU C. 3D characterization of the propagation of small fatigue cracks in steels with different forging conditions[J]. International Journal of Fatigue, 2018, 115: 2-10. doi: 10.1016/j.ijfatigue.2018.06.042
    [30] ZHANG Ji-wang, LI Hang, YANG Bing, et al. Fatigue properties and fatigue strength evaluation of railway axle steel: effect of micro-shot peening and artificial defect[J]. International Journal of Fatigue, 2020, 132: 105379. doi: 10.1016/j.ijfatigue.2019.105379
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  103
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-10
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回