留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气液环簧组合式缓冲器非对称拉压特性动力学建模及冲击仿真

孙树磊 李芾 王广超 田国英 邓鹏毅 米彩盈

孙树磊, 李芾, 王广超, 田国英, 邓鹏毅, 米彩盈. 气液环簧组合式缓冲器非对称拉压特性动力学建模及冲击仿真[J]. 交通运输工程学报, 2021, 21(4): 172-182. doi: 10.19818/j.cnki.1671-1637.2021.04.013
引用本文: 孙树磊, 李芾, 王广超, 田国英, 邓鹏毅, 米彩盈. 气液环簧组合式缓冲器非对称拉压特性动力学建模及冲击仿真[J]. 交通运输工程学报, 2021, 21(4): 172-182. doi: 10.19818/j.cnki.1671-1637.2021.04.013
SUN Shu-lei, LI Fu, WANG Guang-chao, TIAN Guo-ying, DENG Peng-yi, MI Cai-ying. Dynamics modeling of asymmetrical tension and compression characteristics of gas-hydraulic and ring spring combined draft gear and impact simulation[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 172-182. doi: 10.19818/j.cnki.1671-1637.2021.04.013
Citation: SUN Shu-lei, LI Fu, WANG Guang-chao, TIAN Guo-ying, DENG Peng-yi, MI Cai-ying. Dynamics modeling of asymmetrical tension and compression characteristics of gas-hydraulic and ring spring combined draft gear and impact simulation[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 172-182. doi: 10.19818/j.cnki.1671-1637.2021.04.013

气液环簧组合式缓冲器非对称拉压特性动力学建模及冲击仿真

doi: 10.19818/j.cnki.1671-1637.2021.04.013
基金项目: 

国家重点研发计划项目 2018YFB1201603

四川省重大科技专项项目 2019ZDZX0002

四川省科技计划项目 2020YFG0023

四川省科技计划项目 2021YFG0070

四川省科技计划项目 2019YFG0528

四川省科技计划项目 2020YFG0325

详细信息
    作者简介:

    孙树磊(1985-),男,山东日照人,西华大学副教授,工学博士,从事车辆系统动力学与结构强度研究

    通讯作者:

    李芾(1956-),男,云南昆明人,西南交通大学教授,工学博士

  • 中图分类号: U270.34

Dynamics modeling of asymmetrical tension and compression characteristics of gas-hydraulic and ring spring combined draft gear and impact simulation

Funds: 

National Key Research and Development Program of China 2018YFB1201603

Science and Technology Major Project of Sichuan Province 2019ZDZX0002

Sichuan Science and Technology Program 2020YFG0023

Sichuan Science and Technology Program 2021YFG0070

Sichuan Science and Technology Program 2019YFG0528

Sichuan Science and Technology Program 2020YFG0325

More Information
  • 摘要: 为解决气液环簧组合式缓冲器呈现非对称拉压动态特性问题,构建了气液环簧组合式缓冲器动力学模型,基于MATLAB/Simulink软件编制了考虑不同吸能元件特性的车辆冲击动力学模型程序,研究了两辆单车冲击及两列动车组冲击的动态特性。研究结果表明:组合式缓冲器动力学模型既能有效地模拟拉伸状态下环簧缓冲器的线性加载特性,又能较好地模拟压缩状态下气液缓冲器随冲击速度变化的非线性加载动态特性,即组合式缓冲器动力学模型体现了明显的非对称拉压特性;低速与中高速冲击过程中,组合式缓冲器动力学模型及车辆冲击模型可依次完整有效地模拟缓冲器-压溃管-防爬器-车体结构变形产生的缓冲吸能动态过程及磁滞拉压特性曲线;列车冲击速度为5 km·h-1时,最大车钩力及组合式缓冲器最大行程均小于缓冲器阻抗力和行程限值,其压缩加载特性曲线仅呈现出气液缓冲器的加载特性;冲击速度为20 km·h-1时,最大车钩力为2 900 kN,最大行程为534 mm,防爬器已经触发,其压缩加载特性曲线呈现出了气液缓冲器-压溃管-防爬器组成的连续力学特性,此时车体结构未发生破坏;冲击速度达到25~30 km·h-1时,列车开始发生结构破坏,车钩力陡升;全自动车钩与半永久车钩参数选型能够满足冲击速度20 km·h-1以内的列车车体结构安全性。

     

  • 图  1  动车组常用钩缓装置

    Figure  1.  Common coupler and draft gear of EMUs

    图  2  气液环簧组合式缓冲器结构与工作状态

    Figure  2.  Structure and working state of gas-hydraulic and ring spring combined draft gear

    图  3  低速冲击状态下缓冲器特性曲线

    Figure  3.  Characteristic curves of draft gear characteristics under low-speed impact state

    图  4  中高速冲击状态下的列车吸能过程

    Figure  4.  Train energy absorption process under medium-speed and high-speed impact states

    图  5  冲击过程中车辆吸能区域动态特性曲线

    Figure  5.  Dynamic characteristics curves of vehicle energy absorption area during impact processes

    图  6  某Ⅱ型动车组编组型式

    Figure  6.  Marshalling type of a type Ⅱ EMUs

    图  7  钩缓布置与冲击断面

    Figure  7.  Coupler and draft gear arrangement and impact interface

    图  8  5 km·h-1速度下列车冲击动力学计算结果

    Figure  8.  Train impact dynamics calculation results under speed of 5 km·h-1

    图  9  20 km·h-1速度下列车冲击动力学计算结果

    Figure  9.  Train impact dynamics calculation results under speed of 20 km·h-1

    图  10  30 km·h-1速度下列车冲击动力学计算结果

    Figure  10.  Train impact dynamics calculation results under speed of 30 km·h-1

    图  11  列车各断面上的冲击力学特性曲线

    Figure  11.  Impact mechanical characteristics curves on each interface of train

    图  12  列车冲击动力学计算结果最大值统计

    Figure  12.  Statistics of maximum values of train impact dynamics results

    表  1  某Ⅱ型动车组全自动钩缓装置参数

    Table  1.   Parameters of a fully automatic coupler and draft gear for a type Ⅱ EMUs

    车钩类型 性能参数 数值 布置位置 备注
    全自动车钩 拉伸工况(环簧) 最大阻抗力/kN 600 车端 每端1套
    最大行程/mm 30
    压缩工况(气液) 最大阻抗力/kN 1 000
    最大行程/mm 100
    压馈管 稳态阻抗力/kN 1 500
    最大行程/mm 600
    防爬器 压馈管 动态平均阻抗力/kN 700 车端 每端2个
    最大行程/mm 200
    下载: 导出CSV

    表  2  某Ⅱ型动车组半永久车钩缓冲器参数

    Table  2.   Parameters of a semi-permanent coupler and draft gear for a type Ⅱ EMUs

    车钩类型 性能参数 数值 布置位置 备注
    带缓冲器半永久车钩A 拉伸工况(环簧) 最大阻抗力/kN 600 车间 A、B成对使用
    最大行程/mm 23
    压缩工况(气液) 最大阻抗力/kN 800
    最大行程/mm 62
    带压馈管半永久车钩B 压馈管 稳态阻抗力/kN 1 500 车间
    最大行程/mm 350
    下载: 导出CSV
  • [1] COLE C, SPIRYAGIN M, WU Q, et al. Modelling, simulation and applications of longitudinal train dynamics[J]. Vehicle System Dynamics, 2017, 55(1): 1498-1571.
    [2] COLE C, SPIRYAGIN M, BOSOMWORTH C. Examining longitudinal train dynamics in ore car tipplers[J]. Vehicle System Dynamics, 2017, 55(4): 534-551. doi: 10.1080/00423114.2016.1263393
    [3] COLE C, SUN Y Q. Simulated comparisons of wagon coupler systems in heavy haul trains[J]. Journal of Rail and Rapid Transit, 2006, 220(3): 247-256. doi: 10.1243/09544097JRRT35
    [4] CHELI F E. GIALLEONARDO D, MELZI S. Freight trains dynamics: effect of payload and braking power distribution on coupling forces[J]. Vehicle System Dynamics, 2017, 55(4): 464-479. doi: 10.1080/00423114.2016.1246743
    [5] CHELI F, MELZI S. Experimental characterization and modelling of a side buffer for freight trains[J]. Journal of Rail and Rapid Transit, 2010, 224(6): 535-546. doi: 10.1243/09544097JRRT317
    [6] WU Q, SPIRYAGIN M, SUN Y Q, et al. Parallel co- simulation of locomotive wheel wear and rolling contact fatigue in a heavy haul train operational environment[J]. Journal of Rail and Rapid Transit, 2020, DOI: 10.1177/0954409720908497.
    [7] WU Q, COLE C, SPIRYAGIN M, et al. Parallel multiobjective optimisations of draft gear designs[J]. Journal of Rail and Rapid Transit, 2018, 232(3): 744-758. doi: 10.1177/0954409717690981
    [8] WU Q, LUO S H, QU T W, et al. Comparisons of draft gear damping mechanisms[J]. Vehicle System Dynamics, 2017, 55(4): 501-516. doi: 10.1080/00423114.2016.1252049
    [9] COPACI I, T AAĂG N AAĂG SOIU A. Experimental study of the characteristics of shock insulators used on railway vehicles[C]//WSEAS. 6th WSEAS International Conference on Dynamical Systems and Control. Sousse: WSEAS Press, 2010: 25-29.
    [10] T AAĂG N AAĂG SOIU A, COPACI I, OLARU S. On the static and dynamic characteristics of the shock insulators equipping railway vehicles[J]. Recent Researches in Energy, Environment, Devices, Systems, Communications and Computers, 2009, 978(4): 103-107. http://acta.fih.upt.ro/pdf/2009-1/ACTA-2009-1-05.pdf
    [11] WEI W, ZHANG J, ZHAO X B, et al. Heavy haul train impulse and reduction in train force method[J]. Australian Journal of Mechanical Engineering, 2018, 16(2): 118-125. doi: 10.1080/14484846.2018.1457259
    [12] 李朋, 魏伟, 李开颜. 无调车作业重载列车制动工况缓冲器特性研究[J]. 大连交通大学学报, 2019, 40(1): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201901007.htm

    LI Peng, WEI Wei, LI Kai-yan. Characteristic study of heavy haul train draft gear on braking condition without shunting operation[J]. Journal of Dalian Jiaotong University, 2019, 40(1): 31-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201901007.htm
    [13] 常崇义, 王新锐, 姜岩, 等. 钢摩擦与弹性胶泥复合型缓冲器数值模型[J]. 中国铁道科学, 2016, 37(4): 83-88. doi: 10.3969/j.issn.1001-4632.2016.04.13

    CHANG Chong-yi, WANG Xin-rui, JIANG Yan, et al. Numerical model of steel friction and elasticity cement composite draft gear[J]. China Railway Science, 2016, 37(4): 83-88. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.04.13
    [14] 刘鹏飞, 王开云, 张大伟. 牵引及制动操纵对重载机车轮轨动力作用的影响[J]. 中国铁道科学, 2017, 38(2): 96-104. doi: 10.3969/j.issn.1001-4632.2017.02.15

    LIU Peng-fei, WANG Kai-yun, ZHANG Da-wei. Influence of traction and braking operation on wheel-rail dynamic interaction for heavy haul locomotive[J]. China Railway Science, 2017, 38(2): 96-104. (in Chinese) doi: 10.3969/j.issn.1001-4632.2017.02.15
    [15] 赵旭宝, 魏伟, 张军, 等. 缓冲器分段阻抗特性对重载列车纵向冲动的影响[J]. 铁道学报, 2017, 39(10): 33-42. doi: 10.3969/j.issn.1001-8360.2017.10.005

    ZHAO Xu-bao, WEI Wei, ZHANG Jun, et al. Influence of segment impedance characteristics of draft gear on longitudinal impulse of heavy haul train[J]. Journal of the China Railway Society, 2017, 39(10): 33-42. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.10.005
    [16] 马卫华, 宋荣荣, 揭长安, 等. 缓冲器阻抗特性对重载列车动力学性能的影响[J]. 交通运输工程学报, 2011, 11(2): 59-64. http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201102010

    MA Wei-hua, SONG Rong-rong, JIE Chang-an, et al. Influences of buffer impedance characteristics on dynamics performances for heavy haul train[J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 59-64. (in Chinese) http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201102010
    [17] 黄运华, 李芾, 付茂海, 等. 新型铁道车辆液气缓冲器动态特性[J]. 交通运输工程学报, 2005, 5(4): 1-5. http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=200504001

    HUANG Yun-hua, LI Fu, FU Mao-hai, et al. Dynamic characteristic of new hydro-pneumatic buffer for railway vehicle[J]. Journal of Traffic and Transportation Engineering, 2005, 5(4): 1-5. (in Chinese) http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=200504001
    [18] 黄运华, 李芾, 廖小平, 等. 机车车辆液气缓冲器特性研究[J]. 铁道学报, 2005, 27(5): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200505007.htm

    HUANG Yun-hua, LI Fu, LIAO Xiao-ping, et al. Research on characteristics of the hydro-pneumatic buffer for locomotives and vehicles[J]. Journal of the China Railway Society, 2005, 27(5): 31-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200505007.htm
    [19] 张笑慰, 毛从强, 李辛, 等. 基于MATLAB Simulink的气液缓冲器动态特性仿真与分析[J]. 铁道车辆, 2018, 56(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201801001.htm

    ZHANG Xiao-wei, MAO Cong-qiang, LI Xin, et al. Simulation and analysis of dynamic features of gas-liquid buffer based upon MATLAB Simulink[J]. Rolling Stock, 2018, 56(1): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201801001.htm
    [20] 马飞, 张笑慰, 毛从强, 等. 基于MATLAB Simulink的气液缓冲器静态仿真与分析[J]. 铁道车辆, 2016, 54(11): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201611001.htm

    MA Fei, ZHANG Xiao-wei, MAO Cong-qiang, et al. Static simulation and analysis of the hydro-pneumatic buffer based on MATLAB Simulink[J]. Rolling Stock, 2016, 54(11): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201611001.htm
    [21] 李伟刚, 张锁怀, 吴一凡. 铁道车辆新型液气缓冲器建模与仿真分析[J]. 机床与液压, 2014, 42(11): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY201411053.htm

    LI Wei-gang, ZHANG Suo-huai, WU Yi-fan. Modeling and simulation analysis to a new kind of hydro-pneumatic buffer for railway vehicle[J]. Machine Tool and Hydraulics, 2014, 42(11): 163-166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY201411053.htm
    [22] 王颖, 邵万珍. 新型液气缓冲器结构参数对阻抗力的影响研究[J]. 轻工科技, 2019, 35(10): 60-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GXQG201910028.htm

    WANG Ying, SHAO Wan-zhen. Research on the influence of the structural parameters of the new type of gas-hydraulic draft gear on the impedance[J]. Light Industry Science and Technology, 2019, 35(10): 60-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXQG201910028.htm
    [23] ZHU T, YANG B Z, YANG C, et al. The mechanism for the coupler and draft gear and its influence on safety during a train collision[J]. Vehicle System Dynamics, 2018, 56(9): 1375-1393.
    [24] XIE Su-chao, DU Xuan-jin, ZHOU Hui, et al. Analysis of the crashworthiness design and collision dynamics of a subway train[J]. Chemistry of Materials, 2019, 31: 938-946. http://www.researchgate.net/publication/336387640_Analysis_of_the_crashworthiness_design_and_collision_dynamics_of_a_subway_train
    [25] SUN Y Q, COLE C, SPIRYAGIN M. Rail passenger vehicle crashworthiness simulations using multibody dynamics approaches[J]. Journal of Computational and Nonlinear Dynamics, 2017, 12(4): 1-11. http://smartsearch.nstl.gov.cn/paper_detail.html?id=343af940ec335b5ea3d34769ca60f5f3
    [26] LU G. Collision behaviour of crashworthy vehicles in rakes[J]. Journal of Rail and Rapid Transit, 1999, 213(3): 143-160. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GWTD200505006.htm
    [27] 张锁怀, 孟旭. 地铁车辆连挂冲击非线性动力学模型[J]. 机械工程学报, 2012, 48(9): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201209016.htm

    ZHANG Suo-huai, MENG Xu. Nonlinear impacting dynamic model of a metro vehicle[J]. Journal of Mechanical Engineering, 2012, 48(9): 111-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201209016.htm
    [28] 孙树磊, 李芾, 黄运华, 等. 车辆调车纵向冲击特性研究[J]. 铁道学报, 2014, 36(1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201401006.htm

    SUN Shu-lei, LI Fu, HUANG Yun-hua, et al. Research on longitudinal characteristics of vehicle shunting impact[J]. Journal of the China Railway Society, 2014, 36(1): 22-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201401006.htm
    [29] 秦睿贤, 周俊先, 陈秉智. 基于柔性单元的一维列车碰撞模型及参数校正[J]. 铁道学报, 2019, 41(11): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201911011.htm

    QIN Rui-xian, ZHOU Jun-xian, CHEN Bing-zhi. One-dimensional train collision model based on flexible element and parameters calibration[J]. Journal of the China Railway Society, 2019, 41(11): 58-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201911011.htm
    [30] 周和超, 徐世洲, 詹军, 等. 基于有限元和多刚体动力学联合仿真技术的列车碰撞爬车现象研究[J]. 机械工程学报, 2017, 53(12): 166-171. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201712020.htm

    ZHOU He-chao, XU Shi-zhou, ZHAN Jun, et al. Research on the overriding phenomenon during train collision based on FEM and MBS joint simulation[J]. Journal of Mechanical Engineering, 2017, 53(12): 166-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201712020.htm
    [31] 王文斌, 康康, 赵洪伦. 列车耐碰撞系统有限元和多体动力学联合仿真[J]. 同济大学学报: 自然科学版, 2011, 39(10): 1552-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201110027.htm

    WANG Wen-bin, KANG Kang, ZHAO Hong-lun. Joint simulation of crashworthy train set based on finite element and multibody dynamic[J]. Journal of Tongji University: Natural Science, 2011, 39(10): 1552-1556. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201110027.htm
    [32] 孙树磊, 李芾, 黄运华, 等. 重载货车摩擦缓冲器动力学模型研究[J]. 铁道学报, 2015, 37(8): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201508004.htm

    SUN Shu-lei, LI Fu, HUANG Yun-hua, et al. Study on dynamic model of friction draft gear of heavy freight wagon[J]. Journal of the China Railway Society, 2015, 37(8): 17-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201508004.htm
    [33] 孙树磊, 王广超, 彭忆强, 等. 重载货车冲击动态特性及其对摇枕横向载荷的影响[J]. 交通运输工程学报, 2018, 18(3): 94-104. http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201803010

    SUN Shu-lei, WANG Guang-chao, PENG Yi-qiang, et al. Heavy freight wagon impact dynamics and the effect on bolster lateral load[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 94-104. (in Chinese) http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201803010
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  455
  • HTML全文浏览量:  173
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回