留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于弹复力调整的高速列车群动态运行轨迹优化方法

宋鸿宇 上官伟 盛昭 张瑞芬

宋鸿宇, 上官伟, 盛昭, 张瑞芬. 基于弹复力调整的高速列车群动态运行轨迹优化方法[J]. 交通运输工程学报, 2021, 21(4): 235-250. doi: 10.19818/j.cnki.1671-1637.2021.04.018
引用本文: 宋鸿宇, 上官伟, 盛昭, 张瑞芬. 基于弹复力调整的高速列车群动态运行轨迹优化方法[J]. 交通运输工程学报, 2021, 21(4): 235-250. doi: 10.19818/j.cnki.1671-1637.2021.04.018
SONG Hong-yu, SHANGGUAN Wei, SHENG Zhao, ZHANG Rui-fen. Optimization method of dynamic trajectory for high-speed train group based on resilience adjustment[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 235-250. doi: 10.19818/j.cnki.1671-1637.2021.04.018
Citation: SONG Hong-yu, SHANGGUAN Wei, SHENG Zhao, ZHANG Rui-fen. Optimization method of dynamic trajectory for high-speed train group based on resilience adjustment[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 235-250. doi: 10.19818/j.cnki.1671-1637.2021.04.018

基于弹复力调整的高速列车群动态运行轨迹优化方法

doi: 10.19818/j.cnki.1671-1637.2021.04.018
基金项目: 

国家自然科学基金项目 61773049

中央高校基本科研业务费专项资金项目 2020YJS016

北京市自然科学基金项目 L191013

详细信息
    作者简介:

    宋鸿宇(1995-),女,江苏连云港人,北京交通大学工学博士研究生,从事列车运行控制与优化研究

    通讯作者:

    上官伟(1979-),男,陕西咸阳人,北京交通大学教授,工学博士

  • 中图分类号: U284.48

Optimization method of dynamic trajectory for high-speed train group based on resilience adjustment

Funds: 

National Natural Science Foundation of China 61773049

Fundamental Research Funds for the Central Universities 2020YJS016

Beijing Natural Science Foundation L191013

More Information
  • 摘要: 为提高列车控制过程的自主性和智能性,研究了列车群动态运行过程,采用多智能体和图论方法构建了列车群分布式信息交互模型;以节能和准点为优化目标,以安全和乘客舒适度为约束条件,建立了列车群运行轨迹多目标优化模型,利用基于模拟退火思想改进的差分进化算法获取了列车群静态最优运行轨迹;在此基础上,为避免或消解列车运行过程中随机干扰导致的延误传播问题,针对移动闭塞系统,基于弹复力构建了信息交互支撑的列车群动态间隔调整机制,设计了列车群在线协同优化算法,实现了列车群运行轨迹的动态调整,最后采用武广高速铁路实际数据进行了仿真验证。研究结果表明:提出的在线协同优化算法可以有效提升最优解搜索能力,避免Pareto最优解集的频繁更新,在不同干扰场景下算法触发频率平均降低36.7%;在试验设计的一般干扰场景中,优化后的动态调整策略在保证列车群安全平稳运行的同时,将受扰列车的延误度由6.2%降至0,与立即恢复延误策略相比,节能率达4.8%;在试验设计的较大干扰场景中,受扰列车的延误度由13.1%降至1.4%,全局时间偏差恢复为0,节能率达1.8%。可见,提出的方法能够解决运行轨迹静态规划方式无法完全适应外部动态环境变化的问题,有效保障干扰情况下列车运行复合紊态的及时恢复。

     

  • 图  1  CRH380AL型列车牵引/制动特性曲线

    Figure  1.  Traction/braking characteristic curves of Train CRH380AL

    图  2  多智能体列车群分布式信息交互过程

    Figure  2.  Distributed information interaction process of multi-agent train group

    图  3  四阶段最优驾驶策略曲线

    Figure  3.  Optimal driving strategy curve with four phases

    图  4  系统的弹复过程

    Figure  4.  Resilience process of system

    图  5  基于弹复力的列车群动态间隔调整机制

    Figure  5.  Dynamic interval adjustment mechanism of train group based on resilience

    图  6  基于弹复力的相邻列车追踪间隔原理

    Figure  6.  Principle of tracking interval between adjacent trains based on resilience

    图  7  高速列车群运行轨迹优化过程

    Figure  7.  Optimization process of trajectory for high-speed train group

    图  8  在线协同优化算法流程

    Figure  8.  Flow of online cooperative optimization algorithm

    图  9  武汉—长沙南区间内线路信息

    Figure  9.  Line information of Wuhan-Changsha southern section

    图  10  适应度函数收敛性

    Figure  10.  Convergence of fitness function

    图  11  HDEA解集分布特性

    Figure  11.  Distribution characteristics of solution set obtained by HDEA

    图  12  列车群速度-距离曲线

    Figure  12.  Speed-distance curves of train group

    图  13  列车群能耗-距离曲线

    Figure  13.  Energy consumption-distance curves of train group

    图  14  列车群乘客舒适度

    Figure  14.  Passengers' comfort of train group

    图  15  人为误操作下列车G1521的运行轨迹和弹复力曲线

    Figure  15.  Moving trajectories and resilience curves of Train G1521 under man-made mistakes

    图  16  列车运行过程中基本阻力系数变化情况

    Figure  16.  Variations of basic resistant parameters during train operation

    图  17  恶劣天气下列车G1521的运行轨迹和弹复力曲线

    Figure  17.  Trajectories and resilience curves of Train G1521 under scene of heavy weather

    图  18  临时限速下列车群动态运行轨迹

    Figure  18.  Dynamic trajectories of train group under scene of temporary speed restriction

    图  19  临时限速下列车G1521的运行轨迹和弹复力曲线

    Figure  19.  Trajectories and resilience curves of Train G1521 under scene of temporary speed restriction

    图  20  不同方法下G1521在途运行能耗和延误曲线

    Figure  20.  Energy consumption and delay evolution curves of Train G1521 with different approaches

    图  21  晚点发车下列车群动态运行轨迹

    Figure  21.  Dynamic trajectories of train group under scene of starting late

    图  22  晚点发车下列车G1521和G1003的运行轨迹和弹复力曲线

    Figure  22.  Trajectories and resilience curves of Train G1521 and G1003 under scene of starting late

    图  23  不同干扰场景下算法触发时刻分布

    Figure  23.  Trigger point distributions of algorithm under different perturbation scenes

    图  24  不同干扰场景下列车群动态调整后乘客舒适度

    Figure  24.  Passengers' comfort after dynamic adjustment of train group under different perturbation scenes

    表  1  CRH380AL列车基本参数

    Table  1.   Basic parameters of CRH380AL train

    参数 数值
    列车质量/t 890
    回转质量系数 0.06
    最大允许速度/(km·h-1) 310
    启动牵引力/kN 520
    牵引功率/kW 20 440
    弹复力调节因子 0.02
    可接受距离裕度/m 300
    可接受时间裕度/s 5
    下载: 导出CSV

    表  2  列车群运行时刻表

    Table  2.   Operation timetable of train group

    车站 S1 S2 S3 S4 S5
    G1003 AT/s 1 980 5 100
    DT/s 0 2 100
    G1521 AT/s 1 800 5 460
    DT/s 360 1 920
    G1005 AT/s 2 460 4 380 6 540
    DT/s 1 020 2 580 4 500
    G1525 AT/s 7 440
    DT/s 2 760
    下载: 导出CSV

    表  3  列车群计划运行信息

    Table  3.   Scheduled operation information of train group

    车次号 区间 区间里程/km 区间运行时间/s 全程运行时间/s
    G1003 S1~S3 127 1 980 4 980
    S3~S5 234 3 000
    G1521 S1~S2 85 1 440 4 980
    S2~S5 277 3 540
    G1005 S1~S2 85 1 440 5 280
    S2~S4 130 1 800
    S4~S5 147 2 040
    G1525 S1~S5 362 4 680 4 680
    下载: 导出CSV

    表  4  不同参数下的数据统计结果

    Table  4.   Statistical results of simulation with different parameters

    算法参数 仿真结果
    退火速度 种群规模 平均迭代次数 平均运算时间/s
    0.6 30 20 1.44
    0.6 50 17 2.20
    0.6 100 14 3.27
    0.6 200 12 6.01
    0.4 30 18 1.22
    0.4 50 15 1.87
    0.4 100 13 3.11
    0.4 200 11 5.45
    0.2 30 20 1.36
    0.2 50 16 1.90
    0.2 100 12 2.89
    0.2 200 11 5.36
    下载: 导出CSV

    表  5  协同选择机制效率测试结果

    Table  5.   Efficiency test results of cooperative selection mechanism

    仿真参数 仿真结果
    列车A可行解个数 列车B可行解个数 协同运行方案/组 协同选择时间/s
    20 20 400 1.36
    30 30 900 2.92
    50 50 2 500 7.84
    100 100 10 000 32.04
    下载: 导出CSV

    表  6  不同方法优化后的运行结果

    Table  6.   Operational results optimized by different algorithms

    方法 指标 G1003 G1521 G1005 G1525
    SOA 能耗/(kW·h) 13 880 13 863 13 754 13 787
    时间偏差/s 0 0 0 0
    DE 能耗/(kW·h) 13 036 13 006 12 897 12 938
    时间偏差/s +1 0 -1 0
    HEA 能耗/(kW·h) 12 979 12 954 12 850 12 915
    时间偏差/s 0 0 0 0
    HEA相对于SOA 节能率/% 6.49 6.56 6.57 6.32
    HEA相对于DE 节能率/% 0.44 0.40 0.36 0.18
    下载: 导出CSV

    表  7  各车次运行时间偏差

    Table  7.   Operation time deviations of each train  s

    车次 S1 S2 S3 S4 S5
    G1003 260 28 0
    G1521 80 4 0
    G1005 0 0 0
    G1525 0
    下载: 导出CSV
  • [1] ICHIKAWA K. Application of optimization theory for bounded state variable problems to the operation of train[J]. Bulletin of JSME, 1968, 11(47): 857-865. doi: 10.1299/jsme1958.11.857
    [2] HOWLETT P. An optimal strategy for the control of a train[J]. Journal of Australian Mathematical Society Series, 1990, 31: 454-471. doi: 10.1017/S0334270000006780
    [3] HOWLETT P G, CHENG J X. Optimal driving strategies for a train on a track with continuously varying gradient[J]. Journal of Australian Mathematical Society Series, 1997, 38: 388-410. doi: 10.1017/S0334270000000746
    [4] ALBRECHTA R, HOWLETT P G, PUDNEY P J, et al. Energy-efficient train control: from local convexity to global optimization and uniqueness[J]. Automatica, 2013, 49(10): 3072-3078. doi: 10.1016/j.automatica.2013.07.008
    [5] SCHEEPMAKERG M, GOVERDE R M P, KROON L G. Review of energy-efficient train control and timetabling[J]. European Journal of Operational Research, 2017, 257(2): 355-376. doi: 10.1016/j.ejor.2016.09.044
    [6] SCHEEPMAKER G M, GOVERDE R M P. The interplay between energy-efficient train control and scheduled running time supplements[J]. Journal of Rail Transport Planning and Management, 2015, 5(4): 225-239. doi: 10.1016/j.jrtpm.2015.10.003
    [7] XIE Ting, WANG Shu-yi, ZHAO Xia, et al. Optimization of train energy-efficient operation using simulated annealing algorithm[C]//Springer. Intelligent Computing for Sustainable Energy and Environment. Berlin: Springer, 2012: 351-359.
    [8] LU Shao-feng, HILLMANSEN S, HO T K, et al. Single-train trajectory optimization[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 743-750. doi: 10.1109/TITS.2012.2234118
    [9] 黄友能, 宫少丰, 曹源, 等. 基于粒子群算法的城轨列车节能驾驶优化模型[J]. 交通运输工程学报, 2016, 16(2): 118-124. doi: 10.3969/j.issn.1671-1637.2016.02.014

    HUANG You-neng, GONG Shao-feng, CAO Yuan, et al. Optimization model of energy-efficient driving for train in urban rail transit based on particle swarm algorithm[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 118-124. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.02.014
    [10] SHANGGUAN Wei, WANG Juan, SHENG Zhao, et al. Adaptive fuzzy planning of optimal speed profiles for high-speed train operation on the basis of a Pareto set[J]. Transportation Research Record, 2016(2546): 103-111. http://www.researchgate.net/publication/307899388_Adaptive_Fuzzy_Planning_of_Optimal_Speed_Profiles_for_High-Speed_Train_Operation_on_the_Basis_of_a_Pareto_Set
    [11] ACIKBAS S, SOYLEMEZ M T. Coasting point optimisation for mass rail transit lines using artificial neural networks and genetic algorithms[J]. IET Electric Power Applications, 2008, 2(3): 172-182. doi: 10.1049/iet-epa:20070381
    [12] CHANG C S, XU D Y. Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system[J]. IEE Proceedings—Electric Power Applications, 2000, 147(3): 206-212. doi: 10.1049/ip-epa:20000329
    [13] 何庆. 基于遗传算法和模糊专家系统的列车优化控制[D]. 成都: 西南交通大学, 2006.

    HE Qing. Train optimized control based on genetic algorithm and fuzzy expert system[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese)
    [14] WANG Yi-hui, SCHUTTER B D, VAN DE BOOM T, et al. Optimal trajectory planning for trains under a moving block signaling system[C]//IEEE. 2013 European Control Conference. New York: IEEE, 2013: 4556-4561.
    [15] 卢启衡, 冯晓云. 多维并行遗传算法在列车追踪运行节能优化中的应用[J]. 重庆大学学报, 2013, 36(4): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201304007.htm

    LU Qi-heng, FENG Xiao-yun. Application of multi-dimension parallel genetic algorithm to energy-saving optimum control of trains in following operation[J]. Journal of Chongqing University, 2013, 36(4): 39-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201304007.htm
    [16] LI Shu-kai, YANG Li-xing, GAO Zi-you. Adaptive coordinated control of multiple high-speed trains with input saturation[J]. Nonlinear Dynamics, 2016, 83: 2157-2169. doi: 10.1007/s11071-015-2472-8
    [17] LI Shu-kai, YANG Li-xing, GAO Zi-you. Coordinated cruise control for high-speed train movements based on a multi-agent model[J]. Transportation Research Part C: Emerging Technologies, 2015, 56: 281-292. doi: 10.1016/j.trc.2015.04.016
    [18] YAN Xi-hui, CAI Bai-gen, NING Bin, et al. Online distributed cooperative model predictive control of energy-saving trajectory planning for multiple high-speed train movements[J]. Transportation Research Part C: Emerging Technologies, 2016, 69: 60-78. doi: 10.1016/j.trc.2016.05.019
    [19] 刘建强, 魏远乐, 胡辉. 高速列车节能运行优化控制方法研究[J]. 铁道学报, 2014, 36(10): 7-12. doi: 10.3969/j.issn.1001-8360.2014.10.002

    LIU Jian-qiang, WEI Yuan-le, HU hui. Research on optimization control method of energy-saving operation of high-speed trains[J]. Journal of the China Railway Society, 2014, 36(10): 7-12. doi: 10.3969/j.issn.1001-8360.2014.10.002
    [20] ZHOU Lei-shan, TONG Lu, CHEN Jun-hua, et al. Joint optimization of high-speed train timetables and speed profiles: a unified modeling approach using space-time-speed grid networks[J]. Transportation Research Part B: Methodological, 2017, 97: 157-181. doi: 10.1016/j.trb.2017.01.002
    [21] COLEMAN D, HOWLETT P, PUDNEY P, et al. Coasting boards vs optimal control[C]//IEEE. IET Conference on Railway Traction Systems. New York: IEEE, 2010: 14-19.
    [22] FERNÁNDEZ-RODRÍGUEZ A, FERNÁNDEZ-CARDADOR A, CUCALA A P. Real time eco-driving of high speed trains by simulation-based dynamic multi-objective optimization[J]. Simulation Modelling Practice and Theory, 2018, 84: 50-68. doi: 10.1016/j.simpat.2018.01.006
    [23] 侯赞, 陈德旺, 李焱. 基于集成模糊推理的列车运行舒适度评价方法及应用[J]. 铁路计算机应用, 2012, 21(7): 4-7. doi: 10.3969/j.issn.1005-8451.2012.07.002

    HOU Zan, CHEN De-wang, LI Yan. Comfort evaluation method and its application for train operation based on ensemble fuzzy reasoning[J]. Railway Computer Application, 2012, 21(7): 4-7. (in Chinese) doi: 10.3969/j.issn.1005-8451.2012.07.002
    [24] ZOBEL C W. Representing perceived tradeoffs in defining disaster resilience[J]. Decision Support Systems, 2011, 50(2): 394-403. doi: 10.1016/j.dss.2010.10.001
    [25] BARKER K, RAMIREZ-MARQUEZ J E, ROCCO C M. Resilience-based network component importance measures[J]. Reliability Engineering and System Safety, 2013, 117: 89-97. doi: 10.1016/j.ress.2013.03.012
    [26] ADJETEY-BAHUN K, BIRREGAH B, CHȂTELET E, et al. A model to quantify the resilience of mass railway transportation systems[J]. Reliability Engineering and System Safety, 2016, 153: 1-14. doi: 10.1016/j.ress.2016.03.015
    [27] STORN R, PRICE K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. doi: 10.1023/A:1008202821328
    [28] QU B Y, SUGANTHAN P N, LIANG J J. Differential evolution with neighborhood mutation for multimodal optimization[J]. IEEE Transactions on Evolutionary Computation, 2012, 16(5): 601-614. doi: 10.1109/TEVC.2011.2161873
    [29] PRECUP R E, DAVID R C, PETRIU E M, et al. Fuzzy control systems with reduced parametric sensitivity based on simulated annealing[J]. IEEE Transactions on Industrial Electronics, 2012, 59(8): 3049-3061. doi: 10.1109/TIE.2011.2130493
    [30] 段涛, 陈维荣, 戴朝华, 等. 多智能体搜寻者优化算法在电力系统无功优化中的应用[J]. 电力系统保护与控制, 2009, 37(14): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW200914006.htm

    DUAN Tao, CHEN Wei-rong, DAI Chao-hua, et al. Reactive power optimization in power system based on multi-agent seeker optimization algorithm[J]. Power System Protection and Control, 2009, 37(14): 10-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW200914006.htm
    [31] SICRE C, CUCALA A P, FERNÁNDEZ-CARDADOR A. Real time regulation of efficient driving of high speed trains based on a genetic algorithm and a fuzzy model of manual driving[J]. Engineering Applications of Artificial Intelligence, 2014, 29: 79-92. doi: 10.1016/j.engappai.2013.07.015
  • 加载中
图(24) / 表(7)
计量
  • 文章访问数:  518
  • HTML全文浏览量:  191
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-03
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回