留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国高速铁路的崛起和今后的发展

熊嘉阳 沈志云

熊嘉阳, 沈志云. 中国高速铁路的崛起和今后的发展[J]. 交通运输工程学报, 2021, 21(5): 6-29. doi: 10.19818/j.cnki.1671-1637.2021.05.002
引用本文: 熊嘉阳, 沈志云. 中国高速铁路的崛起和今后的发展[J]. 交通运输工程学报, 2021, 21(5): 6-29. doi: 10.19818/j.cnki.1671-1637.2021.05.002
XIONG Jia-yang, SHEN Zhi-yun. Rise and future development of Chinese high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 6-29. doi: 10.19818/j.cnki.1671-1637.2021.05.002
Citation: XIONG Jia-yang, SHEN Zhi-yun. Rise and future development of Chinese high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 6-29. doi: 10.19818/j.cnki.1671-1637.2021.05.002

中国高速铁路的崛起和今后的发展

doi: 10.19818/j.cnki.1671-1637.2021.05.002
基金项目: 

国家重点研发计划项目 2018YFB1201701

国家自然科学基金项目 U19A20102

详细信息
    作者简介:

    熊嘉阳(1969-),男,四川峨眉人,西南交通大学副教授,工学博士,从事车辆轨道系统动力学与磁悬浮车辆系统动力学研究

    通讯作者:

    沈志云(1929-),男,湖南长沙人,西南交通大学教授,中国科学院院士,中国工程院院士,前苏联副博士

  • 中图分类号: U238

Rise and future development of Chinese high-speed railway

Funds: 

National Key Research and Development Program of China 2018YFB1201701

National Natural Science Foundation of China U19A20102

More Information
    Author Bio:

    XIONG Jia-yang(1969-), male, associate professor, PhD, jyxiong@swjtu.edu.cn

    Corresponding author: SHEN Zhi-yun(1929-), male, professor, academician of Chinese Academy of Sciences and Chinese Academy of Engineering, zyshen@swjtu.edu.cn
  • 摘要: 中国高速铁路是世界高速铁路发展中重要的一部分,从历史观点(人类社会发展的必然)和全球视野(世界高速铁路发展的延续)两方面重点回顾了中国高速铁路的崛起和发展历程,从宏观角度分析了世界高速铁路发展的时间轴,阐述了4次世界工业革命不断催生交通运输技术的重大进步,指出了世界高速铁路的发展都要经历4个阶段:酝酿、探索、成熟、发展。美国最早提出建设高速铁路,但至今还在酝酿期。日本、法国、德国等仍然处于探索期。只有中国高速铁路已进入快速发展期。围绕中国高速铁路取得的巨大历史成就,阐述了中国高速铁路引进、消化、吸收再创新到自主创新的过程,阐明了中国高速铁路之所以取得世界瞩目的重大成就,从政策层面看,主要是因为中国在吸收各国探索经验的基础上,在政府统筹下集中力量办大事,充分整合和利用企业、高校、科研院所等的资源优势,创建了轨道交通国家技术创新体系;从技术层面看,主要原因是取得了技术突破、理论突破和试验突破三大重要突破。探讨了高速铁路发展面临的技术挑战,论述了高速铁路关键技术的研究进展,展望了后高铁时代轮轨高铁和磁悬浮高铁的发展方向,提出了智能高铁、智慧高铁、数字高铁等未来发展思路,以期为中国高速铁路的未来走向和发展提供参考,助力中国交通强国伟大梦想的实现。

     

  • 图  1  美国华盛顿至纽约高速公路

    Figure  1.  Washington-New York Highway in America

    图  2  轨道交通国家技术创新体系

    Figure  2.  Rail transit national technical innovation system

    图  3  PHM功能谱

    Figure  3.  Function spectrum of PHM

    图  4  科学与技术相结合的高速列车全寿命周期研发体系

    Figure  4.  Research and development system of whole life cycle of high-speed train combined with science and technology

    图  5  世界各国高速列车的运营速度谱

    Figure  5.  Running velocity spectrum of high-speed trains from all over the world

    图  6  CRH380高速列车转向架

    Figure  6.  CRH380 high-speed train bogie

    图  7  高速转向架研发体系

    Figure  7.  Research and development system of high-speed bogie

    图  8  “复兴号”动力转向架

    Figure  8.  Fuxing power bogie

    图  9  高速列车耦合大系统动力学全局仿真

    Figure  9.  Global dynamics simulation of coupling large system of high-speed train

    图  10  高速列车耦合大系统动力学理论与实践

    Figure  10.  Theory and practice of coupled large system dynamics of high-speed train

    图  11  高速列车耦合大系统动力学研究体系

    Figure  11.  Research system of coupling large system dynamics of high-speed train

    图  12  虚实结合的弓网动力学试验方案

    Figure  12.  Virtual-real testing scheme of bow-net dynamics

    图  13  多输入转向架结构强度与疲劳试验台

    Figure  13.  Multi-input test bench of strength and fatigue of bogie structure

    图  14  液压式橡胶衬套动态刚度频变特性

    Figure  14.  Dynamic stiffness characteristics of hydraulic rubber bushing with frequency

    图  15  正常和频变一系悬挂横向振动加速度对比

    Figure  15.  Comparison of lateral vibration accelerations between normal and frequency-varying primary suspensions

    图  16  磁流变减振器

    Figure  16.  Magnetorheological damper

    图  17  二系稳定性半主动控制器

    Figure  17.  Secondary stability semi-active controller

    图  18  天棚阻尼器原理

    Figure  18.  Skyhook damper principle

    图  19  日本efWING新型转向架结构

    Figure  19.  efWING new bogie structure in Japan

    图  20  进一步的转向架侧架设想

    Figure  20.  Further envisaged bogie side frame

    图  21  架悬式齿轮箱结构

    Figure  21.  Suspension gear box structure

    图  22  流线型转向架的概念设计

    Figure  22.  Conceptual design of streamlined bogie

    图  23  车辆高度方向的噪声测试

    Figure  23.  Noise test of vehicle in height direction

    图  24  车轮降噪方法

    Figure  24.  Noise reduction methods of wheels

    图  25  高速铁路发展演进设想

    Figure  25.  Ideas of high-speed railway development evolution

    表  1  交通运输在4次世界工业革命中的发展

    Table  1.   Development of transportation in four worldwide industrial revolutions

    时期 特点 重大技术进步 交通运输的发展
    18世纪 第1次工业革命
    60年代起开始进入机器时代
    1782年瓦特发明蒸汽机 畜力为主
    19世纪 第2次工业革命
    50年代开始进入电气化时代
    1825年诞生第一条铁路
    1886年诞生第一辆汽车
    铁路为主
    20世纪 第3次工业革命
    60年代开始进入计算机时代
    1931年德国建成第一条高速公路
    1903年莱特兄弟发明第一架飞机
    1914年美国建第一条民航运输线
    1964年日本诞生第一条高速铁路
    高速公路+民航为主,拥堵和
    晚点呼吁新铁路
    21世纪 第4次工业革命
    逐步进入人工智能、数字化时代
    铁路必须完成2个颠覆性技术革命 重回铁路(历史必然),高速铁路+
    管道磁浮
    下载: 导出CSV

    表  2  世界高铁颠覆性技术革命进程

    Table  2.   Disruptive technology revolution process of world high-speed railway

    高铁
    时代
    国外 酝酿期 20世纪50年代 美国筹建Pueblo高速列车试验基地,高铁至今未起步
    探索期 20世纪60年代 日本建新干线,理念新,但起点低,速度提不高
    20世纪80年代 法国起点高,后来达到320 km·h-1,但方向不对
    德国虽然纠正了方向,但高铁不成网
    中国崛起
    40年
    酝酿期 20世纪80年代 建立高速列车系统动力学基础理论,批准筹建450 km·h-1高速列车试验台
    探索期 20世纪90年代 既有线提速,自主研发25种高速列车,并在高速列车试验台进行试验
    成熟期 21世纪初 引进(全球探索的经验)消化吸收再创新(在已有基础上自主创新)
    发展期 2013~2020年 成功开发350 km·h-1的“复兴号”高速列车,建成3.79万公里现代化高标准高铁网
    后高铁
    时代
    前期 2021~2035年 1、开发智能“复兴号”CR450,达到400 km·h-1运营速度;
    2、选择高速磁悬浮技术——高温超导
    中期 2035~2049年 1、研发智慧“复兴号”CR500、CR600;
    2、发展800 km·h-1真空管道磁悬浮列车
    后期 2035~2049年 1、研发智慧“复兴号”CR500、CR600;
    2、发展800 km·h-1真空管道磁悬浮列车
    下载: 导出CSV
  • [1] 中国国家铁路集团有限公司. 中国交通70年大幅跃升高速铁路里程世界第一[EB/OL]. (2019-08-16)[2021-03-15]. https://baike.baidu.com/reference/5923925/976a0EX3Oiy-Wh9xad-D2RUhmU7AFaZpzftVkeYUh1ogvwgN-Wa3cM5gA_1yJDz4-tn1d503Vr1adEvb9HCKQY4lIvLwFxDYQbeMOcVh77et9-VBqefQZQ29JXMfqMWH5HClyZA.

    China State Railway Group Co., Ltd. Chinese transportation has jumped sharply in 70 years, and high-speed railway mileage ranks first in the world[EB/OL]. (2019-08-16)[2021-03-15]. https://baike.baidu.com/reference/5923925/976a0EX3Oiy-Wh9xadD2RUhmU7AFaZpzftVkeYUh1ogvwgN-Wa3cM5gA_1y-JDz4tn1d503Vr1adEvb9HCKQY4lIvLwFxDYQbeMOcV-h77et9VBqefQZQ29JXMfqMWH5HClyZA.(in Chinese)
    [2] 丁叁叁, 陈大伟, 刘加利. 中国高速列车研发与展望[J]. 力学学报, 2021, 53(1): 35-50. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202101004.htm

    DING San-san, CHEN Da-wei, LIU Jia-li. Research, development and prospect of China high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 35-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202101004.htm
    [3] 卢春房. 中国高速铁路的技术特点[J]. 科技导报, 2015, 33(18): 13-19. doi: 10.3981/j.issn.1000-7857.2015.18.001

    LU Chun-fang. Highlights of China high speed railway[J]. Science and Technology Review, 2015, 33(18): 13-19. (in Chinese) doi: 10.3981/j.issn.1000-7857.2015.18.001
    [4] 曲星. 中国高铁: 风驰电掣领跑全球[J]. 党史文汇, 2019(11): 19-25. doi: 10.3969/j.issn.1005-6424.2019.11.008

    QU Xing. China high-speed railway: the speed leads the world[J]. Corpus of Party History, 2019(11): 19-25. (in Chinese) doi: 10.3969/j.issn.1005-6424.2019.11.008
    [5] 沈志云, 张卫华. 中国高铁技术发展中的理论突破和试验突破[J]. 中国发明与专利, 2020, 17(10): 6-16. doi: 10.3969/j.issn.1672-6081.2020.10.001

    SHEN Zhi-yun, ZHANG Wei-hua. Breakthrough in theory development and in experiment methodology of high-speed rail technology in China[J]. China Invention and Patent, 2020, 17(10): 6-16. (in Chinese) doi: 10.3969/j.issn.1672-6081.2020.10.001
    [6] 沈志云. 论我国高速铁路技术创新发展的优势[J]. 科学通报, 2012, 57(8): 594-599. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201208002.htm

    SHEN Zhi-yun. The superiorities in innovatively developing high-speed train technology in China[J]. Chinese Science Bulletin, 2012, 57(8): 594-599. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201208002.htm
    [7] 徐飞, 罗世辉, 邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报, 2019, 41(3): 40-49. doi: 10.3969/j.issn.1001-8360.2019.03.006

    XU Fei, LUO Shi-hui, DENG Zi-gang. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40-49. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.03.006
    [8] 徐飞. 中国高铁的全球战略价值[J]. 学术前沿, 2016(2): 6-20. https://www.cnki.com.cn/Article/CJFDTOTAL-RMXS201602002.htm

    XU Fei. The global strategic value of China's high-speed railway[J]. Frontiers, 2016(2): 6-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RMXS201602002.htm
    [9] 国家铁路局. 高速铁路探索初创阶段[EB/OL]. (2014-03-11)[2021-03-15]. https://baike.baidu.com/reference/5923925/77b1O-8-RNObHPaazcFT1a5-nAMzcr3ujKLMNnjZ8ICVbq-ADVUP5zNlDIKhnhsTxhmP_-hs-23HZLtBCCGffhDDt7k4t-OEWz-PZZBHRJhWLc0LdTGYVqV3Jnba6LDei8WdjVsEw4-TQ-uRug.

    National Railway Administration of People's Republic of China. High-speed railway to explore start-up stage[EB/OL]. (2014-03-11)[2021-03-15]. https://baike.baidu.com/reference/5923925/77b1O-8-RNObHPaazcFT1a5nAMzcr3ujKLM-NnjZ8ICVbq-ADVUP5z-NlDIKhnhsTxhmP_-hs-23HZLtBC-CGffhDDt7k4t-OEWz-PZZBHRJhWLc0LdTGYVqV3Jnba6-LDei8WdjVsEw-4TQ-uRug.(in Chinese)
    [10] 国务院国有资产监督管理委员会. "复兴号"高速列车研制的主持者孙永才[EB/OL]. (2018-12-26)[2021-03-15]. http://www.sasac.gov.cn/n2588025/n2641611/n4518442/c10086300/content.html.

    State-owned Assets Supervision and Administration Commission of the State Council. SUN Yong-cai, the protagonist of "Renaissance" high-speed train development[EB/OL]. (2018-12-26)[2021-03-15]. http://www.sasac.gov.cn/n2588025/n2641611/n4518442/c10086300/content.html.(in Chinese)
    [11] 沈志云. 关于高速铁路及高速列车的研究[J]. 振动、测试与诊断, 1998, 18(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TDTH200107000.htm

    SHEN Zhi-yun. On the study of high-speed railways and trains[J]. Journal of Vibration, Measurement and Diagnosis, 1998, 18(1): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDTH200107000.htm
    [12] 李显君, 熊昱, 冯堃. 中国高铁产业核心技术突破路径与机制[J]. 科研管理, 2020, 41(10): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGL202010001.htm

    LI Xian-jun, XIONG Yu, FENG Kun. Core technology breakthrough path and mechanism of China's high-speed rail industry[J]. Science Research Management, 2020, 41(10): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYGL202010001.htm
    [13] BELL M, PAVITT K. Technological accumulation and industrial growth: contrasts between developed and developing countries[J]. Industrial and Corporate Change, 1993, 2(2): 157-210. doi: 10.1093/icc/2.2.157
    [14] LEE K, LIM C. Technological regimes, catching-up and leapfrogging: findings from the Korean industries[J]. Research Policy, 2001, 30(3): 459-483. doi: 10.1016/S0048-7333(00)00088-3
    [15] 赵建军, 郝栋, 吴保来, 等. 中国高速铁路的创新机制及启示[J]. 工程研究, 2012, 4(1): 57-69. doi: 10.3969/j.issn.1672-6278.2012.01.015

    ZHAO Jian-jun, HAO Dong, WU Bao-lai, et al. The innovation system and inspiration of Chinese high-speed railway[J]. Journal of Engineering Studies, 2012, 4(1): 57-69. (in Chinese) doi: 10.3969/j.issn.1672-6278.2012.01.015
    [16] 满勇, 刘颖琦. 高铁列车技术创新演进研究: 中日两国的对比[J]. 中国科技论坛, 2020(1): 176-188. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKT202101020.htm

    MAN Yong, LIU Ying-qi. The evolution research of bullet train technologic innovation: comparative view of China and Japan[J]. Forum on Science and Technology in China, 2020(1): 176-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKT202101020.htm
    [17] ZHANG Wei-hua, SHEN Zhi-yun, ZENG Jing. Study on dynamics of coupled systems in high-speed trains[J]. Vehicle System Dynamics, 2013, 51(7): 966-1016. doi: 10.1080/00423114.2013.798421
    [18] KNOTHE K L, GRASSIE S L. Modelling of railway track and vehicle/track interaction at high frequencies[J]. Vehicle System Dynamics, 1993, 22(3/4): 209-262.
    [19] ZHAI Wan-ming, SUN Xiang. A detailed model for investigating vertical interaction between railway vehicle and track[J]. Vehicle System Dynamics, 1994, 23(S1): 603-615.
    [20] DIANA G, CHELI F, BRUNI S, et al. Interaction between railroad superstructure and railway vehicles[J]. Vehicle System Dynamics, 1994, 23(S1): 75-86.
    [21] DONG R G, SANKER S, DUKKIPATI R V. A finite element model of railway track and its application to the wheel flat problem[J]. Proceedings of the Institution of Mechanical Engineers Part F, Journal of Rail and Rapid Transit, 1994, 208: 61-72. doi: 10.1243/PIME_PROC_1994_208_234_02
    [22] 李德建, 曾庆元. 列车-直线轨道空间耦合时变系统振动分析[J]. 铁道学报, 1997, 19(1): 101-107. doi: 10.3321/j.issn:1001-8360.1997.01.018

    LI De-jian, ZENG Qing-yuan. Dynamic analysis of train—tangent-track space-coupling time-varying system[J]. Journal of the China Railway Society, 1997, 19(1): 101-107. (in Chinese) doi: 10.3321/j.issn:1001-8360.1997.01.018
    [23] NIELSEN J C O, IGELAND A. Vertical dynamic interaction between train and track-influence of wheel and track imperfections[J]. Journal of Sound and Vibration, 1995, 187(5): 825-839. doi: 10.1006/jsvi.1995.0566
    [24] ZHAI Wan-ming, XIA He, CAI Cheng-biao, et al. High-speed train-track-bridge dynamic interactions—Part Ⅰ: theoretical model and numerical simulation[J]. International Journal of Rail Transportation, 2013, 1(1/2): 3-24.
    [25] ZHAI Wan-ming, WANG Shao-lin, ZHANG Nan, et al. High-speed train-track-bridge dynamic interactions—Part Ⅱ: experimental validation and engineering application[J]. International Journal of Rail Transportation, 2013, 1(1/2): 25-41.
    [26] VICKERMAN R. High-speed rail in Europe: experience and issues for future development[J]. The Annals of Regional Science, 1997, 31(1): 21-38. doi: 10.1007/s001680050037
    [27] GIVONI M. Developmentand impact of the modern high-speed train: a review[J]. Transport Reviews, 2006, 26(5): 593-611. doi: 10.1080/01441640600589319
    [28] PERIS E, GOIKOETXEA J. Roll2Rail: new dependable rolling stock for a more sustainable, intelligent and comfortable rail transport in Europe[J]. Transportation Research Procedia, 2016, 14: 567-574. doi: 10.1016/j.trpro.2016.05.294
    [29] 李永东. 我国高铁未来的发展方向——兼谈顶层设计和底层技术革命相辅相成[J]. 变频器世界, 2017(12): 1-2.

    LI Yong-dong. The future direction of China's high-speed rail—the top design and the underlying technology revolution complement each other[J]. The World of Inverters, 2017(12): 1-2. (in Chinese)
    [30] 稲村文秀, 李伟平. 新一代铁道车辆用转向架[J]. 国外铁道车辆, 2017, 54(3): 24-27. doi: 10.3969/j.issn.1002-7610.2017.03.006

    INAMURA F, LI Wei-ping. The new generation bogies for rolling stock[J]. Foreign Rolling Stock, 2017, 54(3): 24-27. (in Chinese) doi: 10.3969/j.issn.1002-7610.2017.03.006
    [31] KOSEKI T. Technical trends of railway traction in the world[C]//IEEE. The 2010 International Power Electronics Conference. New York: IEEE, 2010: 2836-2831.
    [32] MARZ A, LASKA B, KRAFFT E, et al. Latest Developments in increasing the power density of traction drives[C]//IEEE. The 2014 International Power Electronics Conference. New York: IEEE, 2014: 2113-2119.
    [33] ZHAO Hong-wei, LIANG Jian-ying, LIU Chang-qing. High-speed EMUs: characteristics of technological development and trends[J]. Engineering, 2020, 6(3): 234-244. doi: 10.1016/j.eng.2020.01.008
    [34] LI Liang, DONG Wei, JI Yin-dong, et al. Minimal-energy driving strategy for high-speed electric train with hybrid system model[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1642-1653. doi: 10.1109/TITS.2013.2265395
    [35] 缪炳荣, 张卫华, 池茂儒, 等. 下一代高速列车关键技术特征分析及展望[J]. 铁道学报, 2019, 41(3): 58-70. doi: 10.3969/j.issn.1001-8360.2019.03.008

    MIAO Bing-rong, ZHANG Wei-hua, CHI Mao-ru, et al. Analysis and prospects of key technical features of next generation high speed trains[J]. Journal of the China Railway Society, 2019, 41(3): 58-70. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.03.008
    [36] 李田, 戴志远, 刘加利, 等. 中国高速列车气动减阻优化综述[J]. 交通运输工程学报, 2021, 21(1): 59-80. doi: 10.19818/j.cnki.1671-1637.2021.01.003

    LI Tian, DAI Zhi-yuan, LIU Jia-li, et al. Review on aerodynamic drag reduction optimization of high-speed trains in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 59-80. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.003
    [37] 聂宁, 官科, 钟章队. 德国铁路4.0战略[J]. 中国铁路, 2017(5): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201705018.htm

    NIE Ning, GUAN Ke, ZHONG Zhang-dui. German railway 4.0 strategy[J]. China Railway, 2017(5): 86-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201705018.htm
    [38] 王同军. 中国智能高铁发展战略研究[J]. 中国铁路, 2019(1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201901002.htm

    WANG Tong-jun. Study on the development strategy of China intelligent high speed railway[J]. China Railway, 2019(1): 9-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201901002.htm
    [39] 马建军, 李平, 邵赛, 等. 智能高速铁路关键技术研究及发展路线图探讨[J]. 中国铁路, 2020(7): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202007001.htm

    MA Jian-jun, LI Ping, SHAO Sai, et al. Key technologies and development roadmap of intelligent high speed railways[J]. China Railway, 2020(7): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202007001.htm
    [40] 熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177-198. doi: 10.19818/j.cnki.1671-1637.2021.01.008

    XIONG Jia-yang, DENG Zi-gang. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177-198. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.008
  • 加载中
图(25) / 表(2)
计量
  • 文章访问数:  4885
  • HTML全文浏览量:  1278
  • PDF下载量:  480
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回