留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内轴颈高铁车轴结构设计与强度分析方法

郭峰 吴圣川 冯洋 刘建新 梁树林 尹振坤

郭峰, 吴圣川, 冯洋, 刘建新, 梁树林, 尹振坤. 内轴颈高铁车轴结构设计与强度分析方法[J]. 交通运输工程学报, 2021, 21(5): 138-148. doi: 10.19818/j.cnki.1671-1637.2021.05.012
引用本文: 郭峰, 吴圣川, 冯洋, 刘建新, 梁树林, 尹振坤. 内轴颈高铁车轴结构设计与强度分析方法[J]. 交通运输工程学报, 2021, 21(5): 138-148. doi: 10.19818/j.cnki.1671-1637.2021.05.012
GUO Feng, WU Sheng-chuan, FENG Yang, LIU Jian-xin, LIANG Shu-lin, YIN Zhen-kun. Structural design and strength analysis method for inner journal high-speed railway axles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 138-148. doi: 10.19818/j.cnki.1671-1637.2021.05.012
Citation: GUO Feng, WU Sheng-chuan, FENG Yang, LIU Jian-xin, LIANG Shu-lin, YIN Zhen-kun. Structural design and strength analysis method for inner journal high-speed railway axles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 138-148. doi: 10.19818/j.cnki.1671-1637.2021.05.012

内轴颈高铁车轴结构设计与强度分析方法

doi: 10.19818/j.cnki.1671-1637.2021.05.012
基金项目: 

国家自然科学基金项目 52072321

中国铁路总公司科技研究开发计划课题 P2018J003

牵引动力国家重点实验室开放课题 2019TPL-Q05

牵引动力国家重点实验室开放课题 2021TPL-T04

牵引动力国家重点实验室开放课题 2021TPL-T06

详细信息
    作者简介:

    郭峰(1988-),男,黑龙江双鸭山人,西南交通大学工学博士研究生,从事铁道车辆结构设计与完整性研究

    吴圣川(1979-),男,山东菏泽人,西南交通大学研究员,工学博士

    刘建新(1965-),男,新疆伊犁人,西南交通大学教授,工学博士

  • 中图分类号: U266.2

Structural design and strength analysis method for inner journal high-speed railway axles

Funds: 

National Natural Science Foundation of China 52072321

Project of Science and Technology Research and Development Plan of China Railway P2018J003

Open Project of State Key Laboratory of Traction Power 2019TPL-Q05

Open Project of State Key Laboratory of Traction Power 2021TPL-T04

Open Project of State Key Laboratory of Traction Power 2021TPL-T06

More Information
  • 摘要: 针对高速列车的轻量化设计需求,分析了内轴颈高铁车轴独特的内支承结构与承载特点,建立了内轴颈高铁车轴受力状态和结构强度理论分析模型,提出了内轴颈高铁车轴设计极限载荷和疲劳强度的解析计算方法;在此基础上,制定了基于理论分析、有限元方法和车辆系统动力学的内轴颈高铁车轴结构设计方法,并以17 t轴重的内轴颈高铁车轴为例开展了应用研究;基于内轴颈高铁车轴受力状态的理论分析结果,确定了车轴的临界安全截面和详细尺寸方案;建立了内轴颈高铁车轴的有限元模型,评估并校核了车轴的疲劳强度;建立了轴箱内置式高速动车的刚-柔耦合系统动力学仿真分析模型,验证了车辆的动力学性能和车轴的动荷载。分析结果表明:17 t轴重的新型内轴颈高铁车轴的质量为273.6 kg,比同轴重传统外轴颈高铁车轴的质量低约30%;内轴颈高铁车轴各截面疲劳强度的安全系数均大于1.66,临界安全截面转移至轴颈与轮座之间的卸荷槽及轴颈与轴身之间的过渡圆弧区域;采用内轴颈车轴的高速动车能够以350 km·h-1的速度稳定通过半径为5.5 km的曲线线路,主要动力学性能指标优良;在选定曲线通过工况下车轴所承受的动载荷均能被设计极限载荷包络,据此开展的车轴结构设计和强度分析是稳健的。可见,内轴颈高铁车轴在实现高速列车轻量化设计方面有显著的技术优势,且高速适应性较好,在高速列车领域的发展和应用潜力巨大。

     

  • 图  1  两种高铁动力轮对

    Figure  1.  Two powered wheelsets of high-speed railway

    图  2  内轴颈高铁车轴的受力状态

    Figure  2.  Load-bearing status of inner journal high-speed railway axle

    图  3  高铁车轴疲劳应力集中位置

    Figure  3.  Fatigue stress concentration positions of high-speed railway axle

    图  4  内轴颈高铁车轴设计流程

    Figure  4.  Design process of inner journal high-speed railway axle

    图  5  两种高铁车轴的力矩

    Figure  5.  Bending moments of two high-speed railway axles

    图  6  内轴颈高铁车轴最大合成力矩和临界安全位置

    Figure  6.  Maximum resultant moment and critical safety positions of inner journal high-speed railway axle

    图  7  内轴颈高铁车轴等效应力

    Figure  7.  Equivalent stresses of inner journal high-speed railway axle

    图  8  内轴颈高铁车轴仿真应力与计算应力对比

    Figure  8.  Comparison of calculated stresses and simulated stresses for inner journal high-speed railway axle

    图  9  两种选定曲线通过工况下动力轮对的轮轨垂向力-时间历程

    Figure  9.  Wheel-rail vertical force-time histories for powered wheelsets under two selected curve passing conditions

    图  10  两种选定曲线通过工况下动力轮对的轮轴横向力-时间历程

    Figure  10.  Wheel-axle lateral force-time histories for powered wheelsets under two selected curve passing conditions

    表  1  内轴颈高铁车轴主要设计参数

    Table  1.   Main design parameters of inner journal high-speed railway axle

    参数符号 参数值
    m/t 15.156
    2b/mm 1 100
    2s/mm 1 500
    h/mm 1 200
    R/mm 460
    Rf/mm 350
    Ff/kN 52
    yf/mm 73.5
    Γ 0.3
    P′/kN 88
    F1/kN ±2.35
    F2/kN ±0.80
    F3/kN ±2.35
    y1/mm 952.5
    y2/mm 1 040.0
    y3/mm 1 127.5
    下载: 导出CSV

    表  2  EA4T空心车轴疲劳极限

    Table  2.   Fatigue limits of EA4T hollow axle  MPa

    区域 疲劳极限 许用应力
    内孔 96 58
    轴颈 113 68
    除轴颈外其他安装位置 132 80
    轴身 240 145
    下载: 导出CSV
  • [1] ZHAO Hong-wei, LIANG Jian-ying, LIU Chang-qing. High-speed EMUs: characteristics of technological development and trends[J]. Engineering, 2020, 6(3): 234-244. doi: 10.1016/j.eng.2020.01.008
    [2] 吴圣川, 任鑫焱, 康国政, 等. 铁路车辆部件抗疲劳评估的进展与挑战[J]. 交通运输工程学报, 2021, 21(1): 81-114. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101007.htm

    WU Sheng-chuan, REN Xin-yan, KANG Guo-zheng, et al. Progress and challenge on fatigue resistance assessment of railway vehicle components[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 81-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101007.htm
    [3] 杜松林, 汪开忠, 胡芳忠. 国内外高速列车车轴技术综述及展望[J]. 中国材料进展, 2019, 38(7): 641-649. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201907002.htm

    DU Song-lin, WANG Kai-zhong, HU Fang-zhong. Overview and prospect of axle technology for high speed trains at home and abroad[J]. Materials China, 2019, 38(7): 641-649. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201907002.htm
    [4] SHI Huai-long, WANG Jian-bin, WU Ping-bo, et al. Field measurements of the evolution of wheel wear and vehicle dynamics for high-speed trains[J]. Vehicle System Dynamics, 2018, 56(8): 1187-1206. doi: 10.1080/00423114.2017.1406963
    [5] KLINGER C, BETTGE D. Axle fracture of an ICE3 high speed train[J]. Engineering Failure Analysis, 2013, 35: 66-81. doi: 10.1016/j.engfailanal.2012.11.008
    [6] SON S W, JUNG H S, KWON T S, et al. Fatigue life prediction of a railway hollow axle with a tapered bore surface[J]. Engineering Failure Analysis, 2015, 58: 44-55. doi: 10.1016/j.engfailanal.2015.08.031
    [7] BRACCIALI A, MEGNA G. Contact mechanics issues of a vehicle equipped with partially independently rotating wheelsets[J]. Wear, 2016, 366/367: 233-240. doi: 10.1016/j.wear.2016.03.037
    [8] TIAN J H, LU X X, MA G L, et al. Understanding the effect of elastic wheels on an urban railway system using a new wheel-rail coupling vibration model[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2020, 234: 146441932091698.
    [9] WU Sheng-chuan, LUO Yan, SHEN Zhao, et al. Collaborative crack initiation mechanism of 25CrMo4 alloy steels subjected to foreign object damages[J]. Engineering Fracture Mechanics, 2020, 225: 106844. doi: 10.1016/j.engfracmech.2019.106844
    [10] BERETTA S, GHIDINI A, LOMBARDO F. Fracture mechanics and scale effects in the fatigue of railway axles[J]. Engineering Fracture Mechanics, 2005, 72(2): 195-208. doi: 10.1016/j.engfracmech.2003.12.011
    [11] GAO Jie-wei, PAN Xiang-nan, HAN Jing, et al. Influence of artificial defects on fatigue strength of induction hardened S38C axles[J]. International Journal of Fatigue, 2020, 139: 105746. doi: 10.1016/j.ijfatigue.2020.105746
    [12] MAKINO T, SAKAI H, KOZUKA C, et al. Overview of fatigue damage evaluation rule for railway axles in Japan and fatigue property of railway axle made of medium carbon steel[J]. International Journal of Fatigue, 2020, 132: 105361. doi: 10.1016/j.ijfatigue.2019.105361
    [13] MISTRY P J, JOHNSON M S. Lightweighting of railway axles for the reduction of unsprung mass and track access charges[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(9): 958-968. doi: 10.1177/0954409719877774
    [14] WU Sheng-chuan, XU Zhong-wei, LIU Yu-xuan, et al. On the residual life assessment of high-speed railway axles due to induction hardening[J]. International Journal of Rail Transportation, 2018, 6(4): 218-232. doi: 10.1080/23248378.2018.1427008
    [15] FAJKOŠ R, ZIMA R, STRNADEL B. Fatigue limit of induction hardened railway axles[J]. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38(10): 1255-1264. doi: 10.1111/ffe.12337
    [16] LUO Yan, WU Sheng-chuan, ZHAO Xin, et al. Three- dimensional correlation of damage criticality with the defect size and lifetime of externally impacted 25CrMo4 steel[J]. Materials and Design, 2020, 195: 109001. doi: 10.1016/j.matdes.2020.109001
    [17] REGAZZI D, CANTINI S, CERVELLO S, et al. Improving fatigue resistance of railway axles by cold rolling: process optimisation and new experimental evidences[J]. International Journal of Fatigue, 2020, 137: 105603. doi: 10.1016/j.ijfatigue.2020.105603
    [18] 梁树林, 傅茂海. 内侧悬挂转向架在城轨车辆中的应用研究[J]. 铁道车辆, 2006, 44(4): 4-7. doi: 10.3969/j.issn.1002-7602.2006.04.002

    LIANG Shu-lin, FU Mao-hai. Research on application of inside suspension bogies in urban vehicles[J]. Rolling Stock, 2006, 44(4): 4-7. (in Chinese) doi: 10.3969/j.issn.1002-7602.2006.04.002
    [19] 邓铁松, 吴磊, 凌亮, 等. 轴箱内置与外置直线电机地铁车辆曲线通过性能对比[J]. 计算机辅助工程, 2015, 24(1): 12-17, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201501003.htm

    DENG Tie-song, WU Lei, LING Liang, et al. Comparison of curving performance of linear induction motor metro vehicles with inside and outside axle boxes[J]. Computer Aided Engineering, 2015, 24(1): 12-17, 21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201501003.htm
    [20] WU B W, CHEN G X, LYU J Z, et al. Effect of the axlebox arrangement of the bogie and the primary suspension parameters on the rail corrugation at the sharp curve metro track[J]. Wear, 2019, 426/427: 1828-1836. doi: 10.1016/j.wear.2019.01.038
    [21] 蔡明浩, 兰少明, 黄坤兰, 等. 细化Kriging模型在轻轨车轴优化设计中的应用[J]. 机械设计与制造, 2019(8): 176-179, 183. doi: 10.3969/j.issn.1001-3997.2019.08.046

    CAI Ming-hao, LAN Shao-ming, HUANG Kun-lan, et al. Application of refined Kriging model in optimization design of light rail axles[J]. Machinery Design and Manufacture, 2019(8): 176-179, 183. (in Chinese) doi: 10.3969/j.issn.1001-3997.2019.08.046
    [22] WU Sheng-chuan, LIU Yu-xuan, LI Cun-hai, et al. On the fatigue performance and residual life of intercity railway axles with inside axle boxes[J]. Engineering Fracture Mechanics, 2019, 197: 176-191.
    [23] 刘宇轩, 吴圣川, 李存海, 等. 轴箱内置型铁路车轴疲劳性能与寿命评估[J]. 交通运输工程学报, 2019, 19(3): 100-108. doi: 10.3969/j.issn.1671-1637.2019.03.011

    LIU Yu-xuan, WU Sheng-chuan, LI Cun-hai, et al. Fatigue performance and life assessment of railway axle with inside axle box[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 100-108. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.03.011
    [24] LI Yu-yi, REN Zun-song, ENBLOM R, et al. Wheel wear prediction on a high-speed train in China[J]. Vehicle System Dynamics, 2019, 58(12): 1839-1858.
    [25] LU Yao-hui, BI Wei, ZHANG Xing, et al. Calculation method of dynamic loads spectrum and effects on fatigue damage of a full-scale carbody for high-speed trains[J]. Vehicle System Dynamics, 2019, 58(7): 1037-1056.
    [26] 吴毅, 项彬, 张斌, 等. 高铁车轴强度设计及全尺寸疲劳试验方法比较[J]. 铁道车辆, 2015, 53(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201506002.htm

    WU Yi, XIANG Bin, ZHANG Bin, et al. Comparison in strength design of axles for high speed railway and full-scale fatigue test methods[J]. Rolling Stock, 2015, 53(6): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201506002.htm
    [27] 刘宇轩. 内置轴箱式铁路车轴疲劳强度及损伤容限评价[D]. 成都: 西南交通大学, 2019.

    LIU Yu-xuan. Fatigue strength and damage tolerance assessment on railway axle with inside axle boxes[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
    [28] 王雨舟. 200 km/h高速货车内轴箱转向架总体方案设计及动力学性能研究[D]. 成都: 西南交通大学, 2019.

    WANG Yu-zhou. Overall scheme design and dynamic performance study on inner axle box bogie for 200 km/h high speed freight car[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
    [29] GUO Feng, WU Sheng-chuan, LIU Jian-xin, et al. Fatigue life assessment of bogie frames in high-speed railway vehicles considering gear meshing[J]. International Journal of Fatigue, 2020, 132: 105353. doi: 10.1016/j.ijfatigue.2019.105353
    [30] HU Ya-nan, QIN Qing-bin, WU Sheng-chuan, et al. Fatigue resistance and remaining life assessment of induction-hardened S38C steel railway axles[J]. International Journal of Fatigue, 2021, 144: 106068. doi: 10.1016/j.ijfatigue.2020.106068
    [31] XU Zhong-wei, WU Sheng-chuan, WANG Xi-shu. Fatigue evaluation for high-speed railway axles with surface scratch[J]. International Journal of Fatigue, 2019, 123: 79-86. doi: 10.1016/j.ijfatigue.2019.02.016
    [32] WU Sheng-chuan, XU Zhong-wei, KANG Guo-zheng. Probabilistic fatigue assessment for high-speed railway axles due to foreign object damages[J]. International Journal of Fatigue, 2018, 117: 90-100. doi: 10.1016/j.ijfatigue.2018.08.011
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  817
  • HTML全文浏览量:  251
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回