留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胶粘剂和CFRP吸湿对复合材料粘接接头失效的影响

秦国锋 糜沛纹 那景新

秦国锋, 糜沛纹, 那景新. 胶粘剂和CFRP吸湿对复合材料粘接接头失效的影响[J]. 交通运输工程学报, 2021, 21(5): 149-160. doi: 10.19818/j.cnki.1671-1637.2021.05.013
引用本文: 秦国锋, 糜沛纹, 那景新. 胶粘剂和CFRP吸湿对复合材料粘接接头失效的影响[J]. 交通运输工程学报, 2021, 21(5): 149-160. doi: 10.19818/j.cnki.1671-1637.2021.05.013
QIN Guo-feng, MI Pei-wen, NA Jing-xin. Effect of moisture absorption of adhesive and CFRP on the failure of composite material adhesive joints[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 149-160. doi: 10.19818/j.cnki.1671-1637.2021.05.013
Citation: QIN Guo-feng, MI Pei-wen, NA Jing-xin. Effect of moisture absorption of adhesive and CFRP on the failure of composite material adhesive joints[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 149-160. doi: 10.19818/j.cnki.1671-1637.2021.05.013

胶粘剂和CFRP吸湿对复合材料粘接接头失效的影响

doi: 10.19818/j.cnki.1671-1637.2021.05.013
基金项目: 

国家自然科学基金项目 52102473

国家自然科学基金项目 51775230

广西科技计划项目 GuikeAD20159010

详细信息
    作者简介:

    秦国锋(1990-),男,四川广安人,广西师范大学讲师,工学博士,从事汽车结构设计理论与轻量化技术研究

  • 中图分类号: U270.12

Effect of moisture absorption of adhesive and CFRP on the failure of composite material adhesive joints

Funds: 

National Natural Science Foundation of China 52102473

National Natural Science Foundation of China 51775230

Guangxi Science and Technology Project GuikeAD20159010

More Information
  • 摘要: 对胶粘剂和复合材料的影响进行解耦;采用常温环境分别对胶粘剂、碳纤维增强树脂基复合材料(CFRP)和CFRP/铝合金粘接接头进行不同时间周期的浸泡,研究了不同应力状态对粘接接头失效的影响;以准静态失效测试的失效强度和失效模式分析为主,结合傅里叶变换红外光谱仪分析、差示扫描量热法分析和扫描电子显微镜分析,分别研究胶粘剂和CFRP吸湿后的失效机理,揭示了吸湿对复合材料粘接接头失效的影响机理。分析结果表明:胶粘剂在吸湿30 d后发生了水解,失效强度下降约53.7%,失效应变约为原来的3.2倍;CFRP吸湿后表面粘附性降低,容易引起界面失效,但打磨之后能够得到改善,CFRP吸湿后纤维/基体界面力学性能降低,在正应力状态下更容易造成纤维撕裂;CFRP/铝合金粘接接头的失效强度在吸湿30 d后下降了约23%,失效断面中胶粘剂出现了韧性断裂和界面失效;通过对胶粘剂、CFRP和CFRP/铝合金粘接接头吸湿后的失效分析,发现剪应力状态下的CFRP/铝合金粘接接头失效主要受胶粘剂吸湿后的性能下降影响,其次是界面失效的影响,而正应力状态下的CFRP/铝合金粘接接头失效还受CFRP性能下降造成的纤维撕裂影响。

     

  • 图  1  哑铃试件的几何尺寸(单位:mm)

    Figure  1.  Geometric dimensions of bulk specimen (unit: mm)

    图  2  哑铃试件模具

    Figure  2.  Mould of bulk specimen

    图  3  对接接头几何尺寸(单位:mm)

    Figure  3.  Geometric dimensions of butt joints (unit: mm)

    图  4  粘接接头测试方法

    Figure  4.  Test methods of adhesive joints

    图  5  粘接接头夹具

    Figure  5.  Fixture of adhesive joints

    图  6  解耦原理

    Figure  6.  Decoupling principles

    图  7  胶粘剂哑铃试件测试

    Figure  7.  Test of bulk specimens of adhesive

    图  8  常温浸泡前后的胶粘剂FTIR结果

    Figure  8.  FTIR results of adhesive before and after immersed at room temperature

    图  9  常温浸泡前后的胶粘剂DSC结果

    Figure  9.  DSC results of adhesive before and after immersed at room temperature

    图  10  常温浸泡前后哑铃试件典型应力-应变曲线

    Figure  10.  Representative stress-strain curves of bulk specimens before and after immersed at room temperature

    图  11  常温浸泡前后CFRP的FTIR结果

    Figure  11.  FTIR results of CFRP before and after immersed at room temperature

    图  12  常温浸泡前后CFRP的DSC结果

    Figure  12.  DSC results of CFRP before and after immersed at room temperature

    图  13  吸湿后CFRP剪切接头和对接接头的失效强度

    Figure  13.  Failure strengths of CFRP shear and butt joints after moisture absorption

    图  14  吸湿后CFRP剪切接头的典型失效断面

    Figure  14.  Representative fracture surfaces of CFRP shear joints after moisture absorption

    图  15  吸湿后CFRP对接接头的典型失效断面

    Figure  15.  Representative fracture surfaces of CFRP butt joints after moisture absorption

    图  16  SEM下的CFRP纤维撕裂

    Figure  16.  Fiber tears of CFRP under SEM

    图  17  CFRP/铝合金粘接接头吸湿后的失效强度

    Figure  17.  Failure strengths of CFRP/aluminium alloy adhesive joints after moisture absorption

    图  18  CFRP/铝合金剪切接头吸湿后的典型失效断面

    Figure  18.  Representative fracture surfaces of CFRP/aluminium alloy shear joints after moisture absorption

    图  19  CFRP/铝合金对接接头吸湿后的典型失效断面

    Figure  19.  Representative fracture surfaces of CFRP/aluminium alloy butt joints after moisture absorption

    图  20  SEM下的粘接接头失效断面边缘的胶粘剂

    Figure  20.  Adhesive on edges of fracture surface of adhesive joint under SEM

    表  1  胶粘剂材料属性

    Table  1.   Material properties of adhesive

    材料 杨氏模量/MPa 剪切模量/MPa 泊松比
    Araldite 2015 1 850 560 0.33
    下载: 导出CSV

    表  2  铝合金材料属性

    Table  2.   Material properties of aluminium alloy

    材料 密度/(kg·m-3) 泊松比 杨氏模量/MPa
    6005A 2 730 0.33 71 000
    下载: 导出CSV

    表  3  CFRP材料属性

    Table  3.   Material properties of CFRP

    类型 横向弹性模量/GPa 纵向弹性模量/GPa 剪切模量/GPa 泊松比
    单向 125±12 10±2 7±0.6 0.07
    斜纹 55±5 55±5 4±0.5 0.14
    下载: 导出CSV
  • [1] TAUB A I, LUO A A. Advanced lightweight materials and manufacturing processes for automotive applications[J]. MRS Bulletin, 2015, 40(12): 1045-1054. doi: 10.1557/mrs.2015.268
    [2] 李永兵, 李亚庭, 楼铭, 等. 轿车车身轻量化及其对连接技术的挑战[J]. 机械工程学报, 2012, 48(18): 44-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201218009.htm

    LI Yong-bing, LI Ya-ting, LOU Ming, et al. Light weighting of car body and its challenges to joining technologies[J]. Chinese Journal of Mechanical Engineering, 2012, 48(18): 44-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201218009.htm
    [3] ZANG Meng, HU Ye-fa, ZHANG Jin-guang, et al. Crashworthiness of CFRP/aluminum alloy hybrid tubes under quasi-static axial crushing[J]. Journal of Materials Research and Technology, 2020, 9(4): 7740-7753. doi: 10.1016/j.jmrt.2020.05.046
    [4] SAKUNDARINI N, TAHA Z, ABDUL-RASHID S H, et al. Optimal multi/material selection for lightweight design of automotive body assembly incorporating recyclability[J]. Materials and Design, 2013, 50(17): 846-857.
    [5] 崔岸, 张晗, 于多年, 等. 基于PSI方法的多材料车身部件选材研究[J]. 汽车工程, 2018, 40(2): 239-244, 233. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201802019.htm

    CUI An, ZHANG Han, YU Duo-nian, et al. A study on material selection for multi-material autobody components based on PSI method[J]. Automotive Engineering, 2018, 40(2): 239-244, 233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201802019.htm
    [6] JEEVI G, NAYAK S K, ABDUL KADER M. Review on adhesive joints and their application in hybrid composite structures[J]. Journal of Adhesion Science and Technology, 2019, 33(14): 1497-1520. doi: 10.1080/01694243.2018.1543528
    [7] BUDHE S, BANEA M D, DE BARROS S, et al. An updated review of adhesively bonded joints in composite materials[J]. International Journal of Adhesion and Adhesives, 2017, 72: 30-42. doi: 10.1016/j.ijadhadh.2016.10.010
    [8] JEEVI G, NAYAK S K, ABDUL KADER M. Review on adhesive joints and their application in hybrid composite structures[J]. Journal of Adhesion Science and Technology, 2019, 33(14): 1497-1520. doi: 10.1080/01694243.2018.1543528
    [9] JIANG X, KOLSTEIN H, BIJLAARD F, et al. Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: moisture diffusion characteristics[J]. Composites Part A: Applied Science and Manufacturing, 2014, 57: 49-58. doi: 10.1016/j.compositesa.2013.11.002
    [10] VIANA G, COSTA M, BANEA M, et al. A review on the temperature and moisture degradation of adhesive joints[J]. Journal of Materials: Design and Applications, 2017, 231(5): 488-501.
    [11] 秦国锋. 温湿老化对车用CFRP/铝合金粘接接头静态失效的影响[D]. 长春: 吉林大学, 2018.

    QIN Guo-feng. Effects of temperature and humidity aging on the static failure of adhesively bonded CFRP/aluminium alloy joints for automotive applications[D]. Changchun: Jilin University, 2018. (in Chinese)
    [12] ZHOU J, LUCAS J P. Hygrothermal effects of epoxy resin. Part I: the nature of water in epoxy[J]. Polymer, 1999, 40(20): 5505-5512. doi: 10.1016/S0032-3861(98)00790-3
    [13] AMELI A, DATLA N V, PAPINI M, et al. Hygrothermal properties of highly toughened epoxy adhesives[J]. The Journal of Adhesion, 2010, 86(7): 698-725. doi: 10.1080/00218464.2010.482405
    [14] BANEA M D, DA SILVA L F M. Adhesively bonded joints in composite materials: an overview[J]. Journal of Materials: Design and Applications, 2009, 223(1): 1-18.
    [15] 秦国锋, 那景新. 复合材料胶接接头温度-湿度-载荷老化机理研究概述[J]. 中国胶粘剂, 2020, 29(3): 57-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ202003013.htm

    QIN Guo-feng, NA Jing-xin. Research on temperature-humidity-load aging mechanism of composite bonded joint[J]. China Adhesives, 2020, 29(3): 57-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ202003013.htm
    [16] LIU Shu-feng, CHENG Xiao-quan, ZHANG Qian, et al. An investigation of hygrothermal effects on adhesive materials and double lap shear joints of CFRP composite laminates[J]. Composites Part B: Engineering, 2016, 91: 431-440. doi: 10.1016/j.compositesb.2016.01.051
    [17] 牛一凡, 李璋琪, 朱晓峰. 全湿热场下碳纤维/环氧树脂复合材料弯曲性能及寿命预测[J]. 复合材料学报, 2020, 37(1): 104-112. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202001015.htm

    NIU Yi-fan, LI Zhang-qi, ZHU Xiao-feng. Flexural properties and life-time estimation of carbon fiber/epoxy composite under hygrothermal conditions[J]. Acta Materiae Compositae Sinica, 2020, 37(1): 104-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202001015.htm
    [18] ASHCROFT IA, DIGBY R P, SHAW S J. A comparison of laboratory-conditioned and naturally-weathered bonded joints[J]. The Journal of Adhesion, 2001, 75(2): 175-201. doi: 10.1080/00218460108029600
    [19] MARIAM M, AFENDI M, MAJID M S A, et al. Influence of hydrothermal ageing on the mechanical properties of an adhesively bonded joint with different adherends[J]. Composites Part B: Engineering, 2019, 165: 572-585. doi: 10.1016/j.compositesb.2019.02.032
    [20] SOYKOK I F. Degradation of single lap adhesively bonded composite joints due to hot water ageing[J]. The Journal of Adhesion, 2017, 93(5): 357-374. doi: 10.1080/00218464.2015.1076340
    [21] JIANG X, QIANG X, KOLSTEIN M H, et al. Experimental investigation on mechanical behaviour of FRP-to-steel adhesively-bonded joint under combined loading—Part 2: after hygrothermal ageing[J]. Composite Structures, 2015, 125: 687-697. doi: 10.1016/j.compstruct.2014.12.040
    [22] 王跃, 赵书平, 羊军, 等. "湿热"老化对复合材料胶补金属结构力学特性的影响[J]. 航空材料学报, 2019, 39(4): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201904014.htm

    WANG Yue, ZHAO Shu-ping, YANG Jun, et al. Influences of hydrothermal aging on cracked metallic structure with composite patch[J]. Journal of Aeronautical Materials, 2019, 39(4): 93-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201904014.htm
    [23] 那景新, 谭伟, 慕文龙, 等. 湿热老化对BFRP粘接接头横向冲击力学性能的影响[J]. 交通运输工程学报, 2020, 20(4): 134-144. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004014.htm

    NA Jing-xin, TAN Wei, MU Wen-long, et al. Effect of hygrothermal aging on transverse impact mechanical properties of BFRP adhesive joints[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 134-144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004014.htm
    [24] FERNANDES T A B, CAMPILHO R D S G, BANEA M D, et al. Adhesive selection for single lap bonded joints: experimentation and advanced techniques for strength prediction[J]. The Journal of Adhesion, 2015, 91(10/11): 841-862.
    [25] HASHEMINIA S M, PARK B C, CHUN H J, et al. Failure mechanism of bonded joints with similar and dissimilar material[J]. Composites Part B: Engineering, 2019, 161: 702-709. doi: 10.1016/j.compositesb.2018.11.016
    [26] CAMPILHO R D S G, BANEA M D, NETO J A B P, et al. Modelling of single-lap joints using cohesive zone models: effect of the cohesive parameters on the output of the simulations[J]. Journal of Adhesion, 2012, 88(4-6): 513-533. doi: 10.1080/00218464.2012.660834
    [27] QIN Guo-feng, NA Jing-xin, TAN Wei, et al. Failure prediction of adhesively bonded CFRP-aluminum alloy joints using cohesive zone model with consideration of temperature effect[J]. The Journal of Adhesion, 2019, 95(8): 723-746. doi: 10.1080/00218464.2018.1440212
    [28] LIN Y C, CHEN X, ZHANG H J, et al. Effects of hygrothermal aging on epoxy-based anisotropic conductive film[J]. Materials Letters, 2006, 60(24): 2958-2963. doi: 10.1016/j.matlet.2006.02.024
    [29] XIAO G Z, SHANAHAN M E R. Irreversible effects of hygrothermal aging on DGEBA/DDA epoxy resin[J]. Journal of Applied Polymer Science, 1998, 69(2): 363-369. doi: 10.1002/(SICI)1097-4628(19980711)69:2<363::AID-APP18>3.0.CO;2-X
    [30] BARBOSA A P C, FULCO A P P, GUERRA E S S, et al. Accelerated aging effects on carbon fiber/epoxy composites[J]. Composites Part B: Engineering, 2017, 110: 298-306. doi: 10.1016/j.compositesb.2016.11.004
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  542
  • HTML全文浏览量:  177
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-09
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回