留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒阻尼抑制水下航行器轴系纵振模拟试验

杨俊 刘正林 刘杰 王建 程启超 邓天扬

杨俊, 刘正林, 刘杰, 王建, 程启超, 邓天扬. 颗粒阻尼抑制水下航行器轴系纵振模拟试验[J]. 交通运输工程学报, 2021, 21(5): 161-176. doi: 10.19818/j.cnki.1671-1637.2021.05.014
引用本文: 杨俊, 刘正林, 刘杰, 王建, 程启超, 邓天扬. 颗粒阻尼抑制水下航行器轴系纵振模拟试验[J]. 交通运输工程学报, 2021, 21(5): 161-176. doi: 10.19818/j.cnki.1671-1637.2021.05.014
YANG Jun, LIU Zheng-lin, LIU Jie, WANG Jian, CHENG Qi-chao, DENG Tian-yang. Simulation test of underwater vehicle shafting based on particle damping in longitudinal vibration suppression[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 161-176. doi: 10.19818/j.cnki.1671-1637.2021.05.014
Citation: YANG Jun, LIU Zheng-lin, LIU Jie, WANG Jian, CHENG Qi-chao, DENG Tian-yang. Simulation test of underwater vehicle shafting based on particle damping in longitudinal vibration suppression[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 161-176. doi: 10.19818/j.cnki.1671-1637.2021.05.014

颗粒阻尼抑制水下航行器轴系纵振模拟试验

doi: 10.19818/j.cnki.1671-1637.2021.05.014
基金项目: 

国家自然科学基金项目 51379168

工信部高技术船舶专项项目 CJ02N20

详细信息
    作者简介:

    杨俊(1981-),男,湖北武汉人,武汉理工大学工学博士研究生,从事船舶推进系统性能优化研究

    刘正林(1949-),男,福建闽清人,武汉理工大学教授

    通讯作者:

    刘杰(1975-),男,湖北荆州人,武汉理工大学副教授,工学博士

  • 中图分类号: U664.1

Simulation test of underwater vehicle shafting based on particle damping in longitudinal vibration suppression

Funds: 

National Natural Science Foundation of China 51379168

High-Tech Ship Research Project of Ministry of Industry and Information Technology CJ02N20

More Information
  • 摘要: 在简谐激励条件下,应用轴系颗粒阻尼纵振抑制模拟试验装置研究了旋转工况下的颗粒阻尼减振比;探讨了单腔体多颗粒和多腔体多颗粒时的轴系模拟系统加速度变化,讨论了颗粒的材料、粒径、质量填充比、腔体数量、转速、激励频率与位移等参数对系统减振比的影响规律。研究结果表明:在单腔体多颗粒条件下,填充有铜、钢、橡胶包钢颗粒的系统减振比处于7.83%~8.91%,橡胶颗粒的系统减振比接近于0;铜、钢、橡胶包钢颗粒有明显的抑振效果,颗粒的材料密度和阻尼比越大,抑振效果越好;当颗粒质量填充比为15%时,系统减振比最高为13.77%,但当质量填充比超过15%时,减振比有所降低,故质量填充比一般应根据实际情况控制在15%左右;粒径、转速、激励频率与位移幅值的变化对系统减振比的影响分别为1.76%~8.68%、6.77%~12.50%、4.41%~10.12%与2.19%~7.05%;在多腔体多颗粒工况下,当颗粒总质量填充比和转速一定时,腔体数量对系统减振比有明显影响;当腔体数量为3时,转速为100 r·min-1和质量填充比为25%的最佳系统减振比为22.5%;在多腔体多粒径颗粒工况下,当总质量填充比为10%,转速为50~150 r·min-1的系统减振比波动不大,平均为14.18%,这表明多腔体多粒径组合对转速不十分敏感,具有较好的减振效果,可拓宽转速使用范围。

     

  • 图  1  推力轴与阻尼器

    Figure  1.  Structure of thrust shaft and damper

    图  2  颗粒阻尼轴系纵振模拟试验装置

    Figure  2.  Simulation test device of shafting longitudinal vibration based on particle damping

    图  3  颗粒材料对系统加速度的影响

    Figure  3.  Influence of particle material on system acceleration

    图  4  颗粒粒径对系统加速度的影响

    Figure  4.  Influence of particle size on system acceleration

    图  5  不同粒径的减振比变化趋势

    Figure  5.  Variation trends of vibration reduction ratios under different particle sizes

    图  6  颗粒质量填充比对系统加速度的影响

    Figure  6.  Influence of particle mass filling ratio on system acceleration

    图  7  激励频率对系统加速度的影响

    Figure  7.  Influence of excitation frequency on system acceleration

    图  8  激励位移幅值对系统加速度的影响

    Figure  8.  Influence of excitation displacement amplitude on system acceleration

    图  9  转速对系统加速度的影响

    Figure  9.  Influence of rotating speed on system acceleration

    图  10  两个腔体系统减振比变化趋势

    Figure  10.  Variation trends of vibration reduction ratio of 2 cavity system

    图  11  三个腔体系统减振比变化趋势

    Figure  11.  Variation trends of vibration reduction ratio of 3 cavity system

    图  12  四个腔体系统减振比变化趋势

    Figure  12.  Variation trends of vibration reduction ratio of 4 cavity system

    图  13  两个腔体与2种粒径颗粒组合的系统减振比变化趋势

    Figure  13.  Variation trends of vibration reduction ratio for combined system of 2 cavities and 2 kinds of particle size

    图  14  三个腔体与3种粒径颗粒组合的系统减振比变化趋势

    Figure  14.  Variation trends of vibration reduction ratio for combined system of 3 cavities and 3 kinds of particle size

    图  15  四个腔体与4种粒径颗粒组合系统减振比变化趋势

    Figure  15.  Variation trends of vibration reduction ratio for combined system of 4 cavities and 4 kinds of particle size

    图  16  转速对多腔体混合颗粒抑振的影响

    Figure  16.  Influence of rotating speed on vibration suppression of multi-cavity mixed particles

    图  17  颗粒堆积与运动状态

    Figure  17.  Particle accumulation and motion state

    图  18  追踪点运动状况

    Figure  18.  Motion status of tracking points

    表  1  不同材料颗粒的恢复系数和阻尼比

    Table  1.   Particle recovery coefficients and damping ratios of different materials

    参数 橡胶 橡胶包钢
    e 0.669 0.615 0.711 0.691
    ξ 0.13 0.15 0.11 0.12
    下载: 导出CSV

    表  2  无颗粒阻尼器系统的固有频率

    Table  2.   Natural frequencies of particle-free damper system  Hz

    频率 1 2 3 4 5 6
    fn 211.3 493.0 556.4 706.5 856.8 1 411.6
    下载: 导出CSV

    表  3  不同材料的减振比

    Table  3.   Vibration reduction ratios of different materials  %

    减振比 橡胶 橡胶包钢
    λ 8.64 8.91 0 7.83
    下载: 导出CSV

    表  4  不同粒径的减振比

    Table  4.   Vibration reduction ratios of different particle sizes

    A/mm R/mm
    2 3 4 5
    1.0 5.50 8.39 2.60 3.57
    2.0 1.76 4.71 3.53 4.71
    2.5 4.51 7.79 5.74 7.79
    3.0 6.94 8.68 4.51 7.29
    Σ 18.71 29.57 16.38 23.36
    下载: 导出CSV

    表  5  不同颗粒质量填充比下的减振比

    Table  5.   Vibration reduction ratios of different particle mass filling ratios  %

    δ 5 10 15 20
    λ 5.55 8.62 13.77 11.13
    下载: 导出CSV

    表  6  不同激励频率下的减振比

    Table  6.   Vibration reduction ratios of different excitation frequencies

    f/Hz 3 5 10
    λ/% 4.41 10.12 8.13
    下载: 导出CSV

    表  7  不同激励位移幅值下的减振比

    Table  7.   Vibration reduction ratios of different excitation displacement amplitudes

    A/mm 1 2 3
    λ/% 3.38 2.19 7.05
    下载: 导出CSV

    表  8  不同转速下的减振比

    Table  8.   Vibration reduction ratios at different rotating speeds

    n/(r·min-1) 50 80 100 120 150
    λ/% 9.41 12.50 6.77 6.54 7.94
    下载: 导出CSV

    表  9  两个腔体系统的减振比

    Table  9.   Vibration reduction ratios of 2 cavity system

    n/(r·min-1) δ/%
    10 15 20 25
    50 2.86 3.89 4.93 6.30
    80 6.54 4.90 7.52 9.80
    100 4.25 3.56 2.52 3.91
    120 6.86 7.81 9.09 12.92
    150 8.89 6.06 10.15 14.54
    Σ 29.40 26.22 34.21 47.47
    下载: 导出CSV

    表  10  三个腔体系统的减振比

    Table  10.   Vibration reduction ratio of three 3 cavity system

    n/(r·min-1) δ/%
    10 15 20 25
    50 9.20 11.98 17.04 19.97
    80 4.56 11.11 14.61 17.94
    100 8.54 14.79 18.37 22.50
    120 2.25 10.75 14.88 21.06
    150 3.33 9.63 13.97 17.97
    Σ 27.88 58.26 78.87 99.44
    下载: 导出CSV

    表  11  四个腔体系统的减振比

    Table  11.   Vibration reduction ratios of 4 cavity system

    n/(r·min-1) δ/%
    10 15 20 25
    50 6.32 11.78 13.79 18.67
    80 4.27 12.53 13.10 17.09
    100 9.64 14.87 15.97 20.66
    120 3.65 9.55 15.44 20.22
    150 3.33 9.16 13.33 20.27
    Σ 27.21 57.89 71.63 96.91
    下载: 导出CSV

    表  12  两个腔体与2种粒径颗粒组合的系统减振比

    Table  12.   Vibration reduction ratios of combined system of 2 cavities and 2 kinds of particle size

    n/(r·min-1) R/mm
    (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5)
    50 6.17 7.51 8.46 12.40 8.71 7.15
    80 14.07 13.22 14.90 19.70 16.52 8.40
    100 17.46 17.57 16.87 19.68 17.67 8.96
    120 16.09 17.33 17.89 20.85 6.73 13.26
    150 15.60 15.65 12.07 16.60 13.89 9.82
    Σ 66.39 71.28 70.19 89.23 63.52 47.59
    下载: 导出CSV

    表  13  三个腔体与3种粒径颗粒组合的系统减振比

    Table  13.   Vibration reduction ratios of combined system of 3 cavities and 3 kinds of particle size

    n/(r·min-1) R/mm
    (2, 3, 4) (2, 3, 5) (2, 4, 5) (3, 4, 5)
    50 6.17 7.10 8.63 6.76
    80 11.70 12.93 12.93 12.74
    100 10.78 13.01 13.03 12.79
    120 11.97 13.80 12.43 12.94
    150 11.39 13.32 13.37 13.21
    Σ 52.01 60.16 60.39 58.44
    下载: 导出CSV

    表  14  四个腔体与4种粒径颗粒组合的系统减振比

    Table  14.   Vibration reduction ratios of combined system of 4 cavities and 4 kinds of particle size

    n/(r·min-1) R/mm
    (2, 3, 4, 5)
    50 11.45
    80 15.01
    100 13.89
    120 15.23
    150 13.34
    下载: 导出CSV
  • [1] 闫维明, 张向东, 黄韵文, 等. 基于颗粒阻尼技术的结构减振控制[J]. 北京工业大学学报, 2012, 38(9): 1316-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201209009.htm

    YAN Wei-ming, ZHANG Xiang-dong, HUANG Yun-wen, et al. Structure vibration control based on particle damping technology[J]. Journal of Beijing University of Technology, 2012, 38(9): 1316-1320. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201209009.htm
    [2] FRIEND R D, KINRA V K. Particle impacting damping[J]. Journal of Sound and Vibration, 2000, 233(1): 93-118. doi: 10.1006/jsvi.1999.2795
    [3] DENG Lin-wei, CHEN Zhao-bo, WANG Lin-yu, et al. Analysis of wheel sound radiation characteristics based on particle damping[J]. Noise and Vibration Control, 2019, 36(2): 53-56. (in Chinese)
    [4] 胡溧, 杨驰杰, 杨启梁, 等. 颗粒阻尼影响封闭空腔目标场点声压的试验研究[J]. 机械科学与技术, 2017, 36(2): 319-322. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201702027.htm

    HU Li, YANG Chi-jie, YANG Qi-liang, et al. Experimental study on acoustics of target point in enclosed cavity affected by particle damping[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(2): 319-322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201702027.htm
    [5] MENG Xian-zhi, WANG Zhi-jie, YAN Xian-bin. Experimental research on particle damper with viscoelastic coating[J]. Advances in Mechanical Design, 2018, 55: 889-897.
    [6] DJEMAL F, CHAARI R, GAFSI W, et al. Passive vibration suppression using ball impact damper absorber[J]. Applied Acoustics, 2019, 147: 72-76 doi: 10.1016/j.apacoust.2017.09.011
    [7] MAO Kuan-min, WANG M Y, XU Zhi-wei, et al. Simulation and characterization of particle damping in transient vibrations[J]. Journal of Vibration and Acoustics, 2004, 126(2): 202-211. doi: 10.1115/1.1687401
    [8] 杜妍辰, 张铭命. 带颗粒减振剂的碰撞阻尼的理论与实验[J]. 航空动力学报, 2012, 27(4): 789-794. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201204010.htm

    DU Yan-chen, ZHANG Ming-ming. Theoretical and experimental with fine particles research on impact damping as damping agent[J]. Journal of Aerospace Power, 2012, 27(4): 789-794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201204010.htm
    [9] PAPALOU A, MASRI S F. Response of impact dampers with granular materials under random excitation[J]. Earthquake Engineering and Structural Dynamics, 1996, 25(3): 253-267. doi: 10.1002/(SICI)1096-9845(199603)25:3<253::AID-EQE553>3.0.CO;2-4
    [10] LI K, DARBY A P. Experiments on the effect of an impact damper on a multiple-degree-of-freedom system[J]. Journal of Vibration and Control, 2006, 12(5): 445-464. doi: 10.1177/1077546306063504
    [11] LIU W, TOMLINSON G R, RONGONG J A. The dynamic characterization of disk geometry particle dampers[J]. Journal of Sound and Vibration, 2005, 280(3/4/5): 849-861.
    [12] RONGONG J A, TOMLINSON G R. Amplitude dependent behavior in the application of particle dampers to vibrating structures[C]//AIAA. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. New York: AIAA, 2005: 1-9.
    [13] DARABI B, RONGONG J A. Polymeric particle dampers under steady-state vertical vibrations[J]. Journal of Sound and Vibration, 2012, 331(14): 3304-3316. doi: 10.1016/j.jsv.2012.03.005
    [14] 任德新, 张大义, 何易峰, 等. 带颗粒型金属橡胶夹层阻尼结构的振动响应研究[J]. 推进技术, 2015, 36(11): 124-129. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201501018.htm

    REN De-xin, ZHANG Da-yi, HE Yi-feng, et al. Vibration response investigation on structures with particle metal rubber damper fillings[J]. Journal of Propulsion Technology, 2015, 36(11): 124-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201501018.htm
    [15] 张奎, 闫维明, 王瑾, 等. 简谐波作用下颗粒阻尼器性能试验研究[J]. 工业建筑, 2017, 47(9): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201709016.htm

    ZHANG Kui, YANG Wei-ming, WANG Jin, et al. Experimental research on the performance of particle dampers under harmonic excitation[J]. Industrial Construction, 2017, 47(9): 75-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201709016.htm
    [16] 张海东, 洪永明, 杜杰. 颗粒阻尼器冲击试验研究[J]. 兵工自动化, 2016, 35(1): 8-11. doi: 10.7690/bgzdh.2016.01.003

    ZHANG Hai-dong, HONG Yong-ming, DU Jie. Impact test on the granular damper[J]. Ordnance Industry Automation, 2016, 35(1): 8-11. (in Chinese) doi: 10.7690/bgzdh.2016.01.003
    [17] 闫维明, 王瑾, 许维炳, 等. 连接刚度对调频型颗粒阻尼器减震控制效果影响研究[J]. 振动与冲击, 2018, 37(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201803002.htm

    YAN Wei-ming, WANG Jin, XU Wei-bing, et al. Influences of connected rigidity on vibration control effect of tuned particle dampers[J]. Journal of Vibration and Shock, 2018, 37(3): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201803002.htm
    [18] 王瑾, 闫维明, 许维炳, 等. 微细耗能颗粒对调频型颗粒阻尼器减震效果影响研究[J]. 振动与冲击, 2017, 36(13): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201713011.htm

    WANG Jin, YAN Wei-ming, XU Wei-bing, et al. Influences of fine energy-dissipating particles on vibration reduction effects of tuned particle dampers[J]. Journal of Vibration and Shock, 2017, 36(13): 60-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201713011.htm
    [19] 郭阳阳, 杨啟梁, 胡溧, 等. 一种带活塞的颗粒阻尼器阻尼特性试验研究[J]. 科技通报, 2016, 32(8): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201608003.htm

    GUO Yang-yang, YANG Qi-liang, HU Li, et al. Experimental investigation of damping properties of the particle dampers with piston[J]. Bulletin of Science and Technology, 2016, 32(8): 12-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201608003.htm
    [20] 胡溧, 杨驰杰, 杨啟梁, 等. 周期颗粒阻尼复合板结构的带隙特性研究[J]. 振动与冲击, 2017, 36(3): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201703013.htm

    HU Li, YANG Chi-jie, YANG Qi-liang, et al. Band gap features of a composite slab structure with periodic particle damping[J]. Journal of Vibration and Shock, 2017, 36(3): 77-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201703013.htm
    [21] FRIEND R D, KINRA V K. Particle impact damping[J]. Journal of Sound and Vibration, 2000, 233(1): 93-118. doi: 10.1006/jsvi.1999.2795
    [22] MARWA M, STÉPHANE J, MOHAMED S A, et al. Experimental and analytical analysis of particle damping[C]//Springer. International Conference Design and Modeling of Mechanical Systems. Berlin: Springer, 2017: 483-494.
    [23] HU Li, HUANG Qi-bai, LIU Zhan-xin. A non-obstructive particle damping model of DEM[J]. International Journal of Mechanics and Materials in Design, 2008, 4: 45-51. doi: 10.1007/s10999-007-9053-z
    [24] SATHISHKUMAR B, MOHANASUNDARAM K M, SENTHIL KUMAR M. Impact of particle damping parameters on surface roughness of bored surface[J]. Arabian Journal for Science and Engineering, 2014, 39(10): 7327-7334. doi: 10.1007/s13369-014-1209-1
    [25] ZHANG Kai, CHEN Tian-ning, WANG Xian-peng, et al. Motion mode of the optimal damping particle in particle dampers[J]. Journal of Mechanical Science and Technology, 2016, 30(4): 1527-1531. doi: 10.1007/s12206-016-0305-4
    [26] WANG Yan-rong, LIU Bin, TIAN Ai-mei, et al. Experimental and numerical investigations on the performance of particle dampers attached to a primary structure undergoing free vibration in the horizontal and vertical directions[J]. Journal of Sound and Vibration, 2016, 371: 35-55 doi: 10.1016/j.jsv.2016.01.056
    [27] 胡溧, 陶玉勇, 杨啟梁, 等. 颗粒阻尼双层隔振系统阻尼特性研究[J]. 科技通报, 2019, 35(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201901004.htm

    HU Li, TAO Yu-yong, YANG Qi-liang, et al. Experimental research on particle damping double layer[J]. Bulletin of Science and Technology, 2019, 35(1): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201901004.htm
    [28] KURIYAMA T, SAEKI M. Investigation of dynamic characteristics of rolling particle dampers[J]. Journal of Vibration and Control, 2021, 27(5): 2243-2252.
    [29] 闫维明, 王宝顺, 黄绪宏. 颗粒阻尼器的研究进展及其在土木工程中的应用展望[J]. 土木工程学报, 2020, 53(5): 32-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202005003.htm

    YAN Wei-ming, WANG Bao-shun, HUANG Xu-hong. Research progress of particle damper and its application prospect in civil engineering[J]. China Civil Engineering Journal, 2020, 53(5): 32-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202005003.htm
    [30] 杨俊. 基于多腔体多颗粒阻尼的水下航行器轴系纵振抑制机理及试验研究[D]. 武汉: 武汉理工大学, 2020.

    YUN Jun. Longitudinal vibration suppression mechanism and experiment research of underwater vehicle shafting based on multi-cavity and multi-particle damping[D]. Wuhan: Wuhan University of Technology, 2020. (in Chinese)
  • 加载中
图(18) / 表(14)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  74
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回