留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于轨迹特征的船舶停留行为识别与分类

黄亮 张治豪 文元桥 朱曼 黄亚敏

黄亮, 张治豪, 文元桥, 朱曼, 黄亚敏. 基于轨迹特征的船舶停留行为识别与分类[J]. 交通运输工程学报, 2021, 21(5): 189-198. doi: 10.19818/j.cnki.1671-1637.2021.05.016
引用本文: 黄亮, 张治豪, 文元桥, 朱曼, 黄亚敏. 基于轨迹特征的船舶停留行为识别与分类[J]. 交通运输工程学报, 2021, 21(5): 189-198. doi: 10.19818/j.cnki.1671-1637.2021.05.016
HUANG Liang, ZHANG Zhi-hao, WEN Yuan-qiao, ZHU Man, HUANG Ya-min. Stopping behavior recognition and classification of ship based on trajectory characteristics[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 189-198. doi: 10.19818/j.cnki.1671-1637.2021.05.016
Citation: HUANG Liang, ZHANG Zhi-hao, WEN Yuan-qiao, ZHU Man, HUANG Ya-min. Stopping behavior recognition and classification of ship based on trajectory characteristics[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 189-198. doi: 10.19818/j.cnki.1671-1637.2021.05.016

基于轨迹特征的船舶停留行为识别与分类

doi: 10.19818/j.cnki.1671-1637.2021.05.016
基金项目: 

国家重点研发计划项目 2018YFC1407405

国家自然科学基金项目 41801375

国家自然科学基金项目 51679180

国家自然科学基金项目 51709218

详细信息
    作者简介:

    黄亮(1986-),男,湖北孝昌人,武汉理工大学副研究员,工学博士,从事海事大数据分析与挖掘研究

  • 中图分类号: U698

Stopping behavior recognition and classification of ship based on trajectory characteristics

Funds: 

National Key Research and Development Program of China 2018YFC1407405

National Natural Science Foundation of China 41801375

National Natural Science Foundation of China 51679180

National Natural Science Foundation of China 51709218

More Information
  • 摘要: 为准确评估大规模轨迹数据中的船舶停留活动,构建了两阶段船舶轨迹停留点提取策略,提出了特征驱动的船舶停留行为识别与自动分类方法;以距离、时间和轨迹点数量为约束条件构建了规则模型,检测了原始轨迹中的停留候选轨迹,引入孤立森林算法检测和去除异常离群点,提取了高聚集度的船舶停留轨迹集合;基于船舶靠泊和锚泊的时空特征,定义了轨迹点重复率、相邻点平均距离和最远点对距离3个指标,构建了新的轨迹相似性度量模型,量化了船舶停留轨迹点的分布特征和聚合程度,并利用K近邻算法完成了船舶锚泊行为与靠泊行为的自动分类;采用提出的方法处理了3个不同水域的船舶轨迹数据,准确获取了船舶停留行为的分类结果,并验证了船舶锚泊与靠泊在轨迹时空特征上的差异性,以人工标注结果为参考依据评估了船舶停留行为识别与分类的准确性。研究结果表明:船舶靠泊的轨迹点重复率在80%以上,最远点对距离和相邻点平均距离分别为6~11和1~2 m,船舶锚泊的轨迹点重复率在10%以下,最远点对距离和相邻点平均距离分别为150~250和8~10 m,说明轨迹点重复率、相邻点平均距离和最远点对距离这3个时空特征对船舶靠泊和锚泊具有显著的区分能力;提出的方法对船舶停留识别分类的正确率在98%以上,充分证明了其有效性;采用提出的方法可更新已有码头和锚地的空间位置,自动识别规则水域外的船舶异常停留和规则水域内的超长时间船舶异常停留,掌握在港船舶停留分布情况,识别不同季节、不同时段的热点码头和锚地,从而辅助优化港口规划布局和交通组织。

     

  • 图  1  两阶段船舶停留轨迹点提取策略

    Figure  1.  Two-stage strategy of stop points extraction from ship trajectory

    图  2  船舶轨迹在同一位置的重复停留

    Figure  2.  Repeated stops of ship trajectories at same location

    图  3  孤立森林算法孤立过程

    Figure  3.  Isolation process of isolation forest algorithm

    图  4  试验区域地理范围和船舶轨迹数据可视化

    Figure  4.  Geographical scope and visualization of ship trajectory data of test regions

    图  5  船舶停留轨迹提取结果

    Figure  5.  Result of ship stop trajectory extraction

    图  6  三个区域船舶停留轨迹特征和分类结果

    Figure  6.  Characteristics and classification results of ship stop trajectories in three regions

    图  7  三个区域船舶停留分类结果可视化

    Figure  7.  Visualization of classification result of ship stops in three regions

    表  1  试验区域船舶和轨迹总数

    Table  1.   Total numbers of ships and trajectories in test regions

    数据属性 区域1 区域2 区域3
    轨迹总数 316 831 845 358 2 672 613
    船舶数 77 326 460
    时间范围 2017-01 2017-01 2017-01
    下载: 导出CSV

    表  2  船舶停留K近邻分类结果

    Table  2.   K-nearest neighbor classification results of ship stops

    试验位置 停留次数 锚泊次数 靠泊次数
    区域1 349 121 228
    区域2 1 914 1 300 614
    区域3 3 512 1 903 1 609
    下载: 导出CSV

    表  3  算法分类结果的人工验证

    Table  3.   Manual verification of classification results of algorithm

    试验位置 停留次数 人工验证错误数 识别正确率/%
    A组 B组 C组 平均
    区域1 349 4 4 4 4 98.85
    区域2 1 914 19 21 20 20 98.95
    区域3 3 512 39 43 50 44 98.75
    下载: 导出CSV
  • [1] 陈金海, 陆锋, 彭国均. 海洋运输船舶轨迹分析研究进展[J]. 中国航海, 2012, 35(3): 53-57. doi: 10.3969/j.issn.1000-4653.2012.03.012

    CHEN Jin-hai, LU Feng, PENG Guo-jun. The progress of research in maritime vessel trajectory analysis[J]. Navigation of China, 2012, 35(3): 53-57. (in Chinese) doi: 10.3969/j.issn.1000-4653.2012.03.012
    [2] 黄亮, 刘益, 文元桥, 等. 内河渡船异常行为识别[J]. 大连海事大学学报, 2017, 43(1): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201701002.htm

    HUANG Liang, LIU Yi, WEN Yuan-qiao, et al. Abnormal behavior recognition of inland river ferryboat[J]. Journal of Dalian Maritime University, 2017, 43(1): 8-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201701002.htm
    [3] HUANG Liang, WEN Yuan-qiao, GUO Wei, et al. Mobility pattern analysis of ship trajectories based on semantic transformation and topic model[J]. Ocean Engineering, 2020, 201: 107092. doi: 10.1016/j.oceaneng.2020.107092
    [4] SHENG Pan, YIN Jing-bo. Extracting shipping route patterns by trajectory clustering model based on automatic identification system data[J]. Sustainability, 2018, 10(7): 2327. doi: 10.3390/su10072327
    [5] GAO Miao, SHI Guo-you, LI Shuang. Online prediction of ship behavior with automatic identification system sensor data using bidirectional long short-term memory recurrent neural network[J]. Sensors, 2018, 18(12): 4211. doi: 10.3390/s18124211
    [6] YANG Dong, WU Ling-xiao, WANG Shuai-an, et al. How big data enriches maritime research—a critical review of automatic identification system (AIS) data applications[J]. Transport Reviews, 2019, 39(6): 755-773. doi: 10.1080/01441647.2019.1649315
    [7] SHENG Kai, LIU Zhong, ZHOU De-chao, et al. Research on ship classification based on trajectory features[J]. Journal of Navigation, 2018, 71(1): 100-116. doi: 10.1017/S0373463317000546
    [8] HÖRTEBORN A, RINGSBERG J W, SVANBERG M, et al. A revisit of the definition of the ship domain based on AIS analysis[J]. Journal of Navigation, 2019, 72(3): 777-794. doi: 10.1017/S0373463318000978
    [9] GAO Miao, SHI Guo-you. Ship spatiotemporal key feature point online extraction based on AIS multi-sensor data using an improved sliding window algorithm[J]. Sensors, 2019, 19(12): 2706. doi: 10.3390/s19122706
    [10] ZHANG Shu-kai, SHI Guo-you, LIU Zheng-jiang, et al. Data-driven based automatic maritime routing from massive AIS trajectories in the face of disparity[J]. Ocean Engineering, 2018, 155: 240-250. doi: 10.1016/j.oceaneng.2018.02.060
    [11] KIM J S, JEONG J S. Extraction of reference seaway through machine learning of ship navigational data and trajectory[J]. International Journal of Fuzzy Logic and Intelligent Systems, 2017, 17(2): 82-90. doi: 10.5391/IJFIS.2017.17.2.82
    [12] ZHOU Yang, DAAMEN W, VELLINGA T, et al. Ship classification based on ship behavior clustering from AIS data[J]. Ocean Engineering, 2019, 175: 176-187. doi: 10.1016/j.oceaneng.2019.02.005
    [13] JIN Liang, LUO Zheng-yi, GAO Shu. Visual analytics approach to vessel behaviour analysis[J]. The Journal of Navigation, 2018, 71(5): 1195-1209. doi: 10.1017/S0373463318000085
    [14] 文元桥, 张义萌, 黄亮, 等. 基于语义的船舶行为动态推理机制[J]. 中国航海, 2019, 42(3): 34-39, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201903008.htm

    WEN Yuan-qiao, ZHANG Yi-meng, HUANG Liang, et al. Mechanism of ship behavior dynamic reasoning based on semantics[J]. Navigation of China, 2019, 42(3): 34-39, 50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201903008.htm
    [15] ALESSANDRINI A, MAZZARELLA F, VESPE M. Estimated time of arrival using historical vessel tracking data[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(1): 7-15.
    [16] WEN Yuan-qiao, ZHANG Yi-meng, HUANG Liang, et al. Semantic modelling of ship behavior in harbor based on ontology and dynamic Bayesian network[J]. ISPRS International Journal of Geo-Information, 2019, 8(3): 107. doi: 10.3390/ijgi8030107
    [17] HUANG Ya-min, CHEN Lin-ying, VAN GELDER P H A J M. Generalized velocity obstacle algorithm for preventing ship collisions at sea[J]. Ocean Engineering, 2019, 173: 142-156. doi: 10.1016/j.oceaneng.2018.12.053
    [18] WANG Jiang, ZHU Cheng, ZHOU Yun, et al. Vessel spatio-temporal knowledge discovery with AIS trajectories using co-clustering[J]. Journal of Navigation, 2017, 70(6): 1383-1400. doi: 10.1017/S0373463317000406
    [19] PATROUMPAS K, ALEVIZOS E, ARTIKIS A, et al. Online event recognition from moving vessel trajectories[J]. GeoInformatica, 2017, 21(2): 389-427. doi: 10.1007/s10707-016-0266-x
    [20] PALLOTTA G, VESPE M, BRYAN K. Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction[J]. Entropy, 2013, 15(6): 2218-2245.
    [21] 丁兆颖, 姚迪, 吴琳, 等. 一种基于改进的DBSCAN的面向海量船舶位置数据码头挖掘算法[J]. 计算机工程与科学, 2015, 37(11): 2061-2067. doi: 10.3969/j.issn.1007-130X.2015.11.011

    DING Zhao-ying, YAO Di, WU Lin, et al. A dock mining algorithm for massive vessel location data based on improved DBSCAN[J]. Computer Engineering and Science, 2015, 37(11): 2061-2067. (in Chinese) doi: 10.3969/j.issn.1007-130X.2015.11.011
    [22] 叶仁道, 姜玲, 张瑜. 大数据背景下全球船舶停泊点的数据挖掘分析[J]. 杭州电子科技大学学报(社会科学版), 2018, 14(1): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HZDS201801003.htm

    YE Ren-dao, JIANG Ling, ZHANG Yu. A data mining analysis of global moorages under big data background[J]. Journal of Hangzhou Dianzi University (Social Sciences), 2018, 14(1): 13-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZDS201801003.htm
    [23] 郑海林, 胡勤友, 杨春, 等. 上海外高桥港区停泊船聚类分析与异常检测[J]. 地球信息科学学报, 2018, 20(5): 640-646. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201805012.htm

    ZHENG Hai-lin, HU Qin-you, YANG Chun, et al. Clustering analysis and anomaly detection of berthing ships at Waigaoqiao Harbour District of Shanghai[J]. Journal of Geo-information Science, 2018, 20(5): 640-646. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201805012.htm
    [24] 郑振涛, 赵卓峰, 王桂玲, 等. 面向港口停留区域识别的船舶停留轨迹提取方法[J]. 计算机应用, 2019, 39(1): 113-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201901022.htm

    ZHENG Zhen-tao, ZHAO Zhuo-feng, WANG Gui-ling, et al. Ship trajectory extraction method for port parking area identification[J]. Journal of Computer Applications, 2019, 39(1): 113-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201901022.htm
    [25] LIU F T, TING K M, ZHOU Zhi-hua. Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data, 2012, 6(1): 1-39.
    [26] 向琛. 基于孤立森林算法的船舶异常行为集成检测[D]. 大连: 大连海事大学, 2020.

    XIANG Chen. Integrated detection of ship abnormal behavior based on isolation forest algorithm[D]. Dalian: Dalian Maritime University, 2020. (in Chinese)
    [27] 陈家义, 李福武, 何小阳. AIS系统在大型船舶锚泊半径及船间距的应用[J]. 舰船科学技术, 2017, 39(5): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201710024.htm

    CHEN Jia-yi, LI Fu-wu, HE Xiao-yang. The application of AIS system in the large ship's mooring radius and ship spacing[J]. Ship Science and Technology, 2017, 39(5): 67-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201710024.htm
    [28] 刘磊, 初秀民, 蒋仲廉, 等. 基于KNN的船舶轨迹分类算法[J]. 大连海事大学学报, 2018, 44(3): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201803005.htm

    LIU Lei, CHU Xiu-min, JIANG Zhong-lian, et al. Ship trajectory classification algorithm based on KNN[J]. Journal of Dalian Maritime University, 2018, 44(3): 15-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201803005.htm
    [29] LUO Xiang-long, LI Dan-yang, YANG Yu, et al. Spatiotemporal traffic flow prediction with KNN and LSTM[J]. Journal of Advanced Transportation, 2019, 2019: 4145353.
    [30] 霍豪, 沈金星, 郑长江. 基于KNN算法的公交到站时间预测[J]. 交通运输工程与信息学报, 2020, 18(4): 76-82, 102. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC202004010.htm

    HUO Hao, SHEN Jin-xing, ZHENG Chang-jiang. Bus arrival time prediction based on KNN algorithm[J]. Journal of Transportation Engineering and Information, 2020, 18(4): 76-82, 102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC202004010.htm
    [31] 吕荣. 基于大数据处理技术的AIS应用研究[J]. 海军工程大学学报, 2017, 29(4): 98-102, 112. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGX201704020.htm

    LYU Rong. Applications for AIS by bigdata processing technology[J]. Journal of Naval University of Engineering, 2017, 29(4): 98-102, 112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJGX201704020.htm
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1324
  • HTML全文浏览量:  321
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-15
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回