留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于交通流时间序列相似性的NCut城市路网分区算法

殷辰堃 方茹 李拓

殷辰堃, 方茹, 李拓. 基于交通流时间序列相似性的NCut城市路网分区算法[J]. 交通运输工程学报, 2021, 21(5): 238-250. doi: 10.19818/j.cnki.1671-1637.2021.05.020
引用本文: 殷辰堃, 方茹, 李拓. 基于交通流时间序列相似性的NCut城市路网分区算法[J]. 交通运输工程学报, 2021, 21(5): 238-250. doi: 10.19818/j.cnki.1671-1637.2021.05.020
YIN Chen-kun, FANG Ru, LI Tuo. NCut partitioning algorithm for urban road networks based on similarity of traffic flow time series[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 238-250. doi: 10.19818/j.cnki.1671-1637.2021.05.020
Citation: YIN Chen-kun, FANG Ru, LI Tuo. NCut partitioning algorithm for urban road networks based on similarity of traffic flow time series[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 238-250. doi: 10.19818/j.cnki.1671-1637.2021.05.020

基于交通流时间序列相似性的NCut城市路网分区算法

doi: 10.19818/j.cnki.1671-1637.2021.05.020
基金项目: 

国家自然科学基金项目 62073025

国家自然科学基金项目 62073026

详细信息
    作者简介:

    殷辰堃(1981-),男,北京人,北京交通大学副教授,工学博士,从事数据驱动控制与优化研究

  • 中图分类号: U113

NCut partitioning algorithm for urban road networks based on similarity of traffic flow time series

Funds: 

National Natural Science Foundation of China 62073025

National Natural Science Foundation of China 62073026

More Information
  • 摘要: 针对大规模城市道路交通路网分区的实际需求,基于可反映时间序列变化趋势的皮尔逊相关系数和度量空间关系的欧式距离,构建了一种衡量交通流时间序列相似性的综合指标; 结合交通流时间序列的时空相似性特点,引入子区内的空间连通约束,利用归一化割(NCut)算法设计了一种改进的路网静态分区算法; 为体现交通路网分区的时变特征,选取了合适的评价指标来确定每一时间段内合理的分区数量,提出了一种基于时间序列的NCut路网动态分区算法; 利用北京市东北二环区域内采集的路段交通流速度数据,应用所设计的算法对7.23 km2的路网进行分区,对比了晚高峰时期的分区效果。研究结果表明:所提出的分区算法能实现对路网内不同区域交通状况的有效识别,以30 min为间隔的动态分区算法能划分出数量和范围随时间变化的多个可变子区域; 与子区数固定为2、3、4、5的静态分区算法相比,动态分区算法的评价指标分别提升了63.77%、50.06%、6.43%和7.13%,提高了路网分区效果。可见,本文提出的动态分区算法在保证子区内部连通性的基础上可将异质路网划分成多个内部同质子区域,并充分体现交通流动态演化的时空特性,有利于制定动态的多区域边界控制方案。

     

  • 图  1  实例路网

    Figure  1.  Road network of case study

    图  2  不同时段的路网速度分布直方图

    Figure  2.  Histograms of road network speed distribution at different time intervals

    图  3  16:30~17:00时段内不同子区数k的静态分区结果

    Figure  3.  Static partitioning results for different cluster numbers during 16:30-17:00

    图  4  16:30~17:00内不同子区数下的子区域速度分布直方图

    Figure  4.  Histogram of subregion speed distribution for different cluster numbers during 16:30-17:00

    图  5  静态分区下不同分区数时变曲线

    Figure  5.  Time-varying curves of different cluster numbers using static partitioning

    图  6  16:00~20:00时段内路网动态分区结果

    Figure  6.  Dynamic partitioning results during 16:00-20:00

    图  7  动态分区下子区路段数量和平均速度时变曲线

    Figure  7.  Time-varying curves of link numbers and average speeds using dynamic partitioning

    图  8  动态分区下子区域更新、分裂和合并过程

    Figure  8.  Updating, splitting and merging process of dynamic partitioning

    表  1  静态分区下各子区路段速度的统计结果及分区评价指标

    Table  1.   Statistics of link speed in different subregions and evaluation index for static partitioning

    k 子区1速度/ (km·h-1) 子区2速度/ (km·h-1) 子区3速度/ (km·h-1) 子区4速度/ (km·h-1) 子区5速度/ (km·h-1) Vk Sk
    平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差
    2 30.51 9.74 30.54 9.30 0.97 0.87
    3 30.40 9.79 32.70 9.06 29.40 9.19 0.89 0.97
    4 30.77 9.01 32.66 8.90 29.89 10.76 27.70 9.12 0.78 0.79
    5 31.16 8.94 35.62 9.18 29.09 9.21 28.62 8.68 29.89 10.77 0.83 0.80
    下载: 导出CSV

    表  2  16:00~20:00内动态分区和静态分区下的M

    Table  2.   M of dynamic partitioning and static partitioning during 16:00-20:00

    分区 SP (k=2) SP (k=3) SP (k=4) SP (k=5) DP
    M/(km·h-1) 21.34 23.29 32.83 32.61 34.94
    DP性能提升率/% 63.77 50.06 6.43 7.13
    下载: 导出CSV
  • [1] LIU Qiang, WANG Qing, LIU Shu-an. An improved sub- networks partitioning method for urban traffic networks[C]// IEEE. 31st Chinese Control and Decision Conference. New York: IEEE, 2019: 6405-6410.
    [2] XUN Jing, LIU Tong, NING Bin, et al. Using approximate dynamic programming to maximize regenerative energy utilization for metro[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3650-3662. doi: 10.1109/TITS.2019.2930766
    [3] 刘小明, 何忠贺. 城市智能交通系统技术发展现状及趋势[J]. 自动化博览, 2015, 32(1): 58-60. doi: 10.3969/j.issn.1003-0492.2015.01.042

    LIU Xiao-ming, HE Zhong-he. Development and tendency of intelligent transportation systems in China[J]. Automation Panorama, 2015, 32(1): 58-60. (in Chinese) doi: 10.3969/j.issn.1003-0492.2015.01.042
    [4] WALINCHUS R J. Real-time network decomposition and subnetwork interfacing[J]. Highway Research Record, 1971, 366: 20-28.
    [5] DAGANZO C F. Urban gridlock: macroscopic modeling and mitigation approaches[J]. Transportation Research Part B: Methodological, 2007, 41(1): 49-62. doi: 10.1016/j.trb.2006.03.001
    [6] GEROLIMINIS N, DAGANZO C F. Existence of urban- scale macroscopic fundamental diagrams: some experimental findings[J]. Transportation Research Part B: Methodological, 2008, 42(9): 759-770. doi: 10.1016/j.trb.2008.02.002
    [7] JI Y, GEROLIMINIS N. On the spatial partitioning of urban transportation networks[J]. Transportation Research Part B: Methodological, 2012, 46(10): 1639-1656. doi: 10.1016/j.trb.2012.08.005
    [8] SAEDI R, SAEEDMANESH M, ZOCKAIE A, et al. Estimating network travel time reliability with network partitioning[J]. Transportation Research Part C: Emerging Technologies, 2020, 112: 46-61. doi: 10.1016/j.trc.2020.01.013
    [9] MA Dong-fang, LI Wen-jing, SONG Xiang, et al. Time-of-day breakpoints optimisation through recursive time series partitioning[J]. IET Intelligent Transport Systems, 2019, 13(4): 683-692. doi: 10.1049/iet-its.2018.5162
    [10] LECLERCQ L, LADINO A, BECARIE C. Enforcing optimal routing through dynamic avoidance maps[J]. Transportation Research Part B: Methodological, 2021, 149: 118-137. doi: 10.1016/j.trb.2021.05.002
    [11] ZHANG Yi-cheng, SU Rong. An optimization model and traffic light control scheme for heterogeneous traffic systems[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 102911. doi: 10.1016/j.trc.2020.102911
    [12] DANTSUJI T, HIRABAYASHI S, GE Q, et al. Cross comparison of spatial partitioning methods for an urban transportation network[J]. International Journal of Intelligent Transportation Systems Research, 2019, 18(3): 412-421.
    [13] LI Dai, HOU Zhong-sheng. Perimeter control of urban traffic networks based on model-free adaptive control[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(10): 1-13. doi: 10.1109/TITS.2021.3113621
    [14] HADDAD J, MIRKIN B. Resilient perimeter control of macroscopic fundamental diagram networks under cyberattacks[J]. Transportation Research Part B: Methodological, 2020, 132: 44-59. doi: 10.1016/j.trb.2019.01.020
    [15] HADDAD J, ZHENG Z. Adaptive perimeter control for multi-region accumulation-based models with state delays[J]. Transportation Research Part B: Methodological, 2020, 137: 133-153. doi: 10.1016/j.trb.2018.05.019
    [16] DO L N N, VU H L, VO B Q, et al. An effective spatial-temporal attention based neural network for traffic flow prediction[J]. Transportation Research Part C: Emerging Technologies, 2019, 108: 12-28. doi: 10.1016/j.trc.2019.09.008
    [17] WANG Wei, ZHANG Han-yu, LI Tong, et al. An interpretable model for short term traffic flow prediction[J]. Mathematics and Computers in Simulation, 2019, 171: 264-278.
    [18] WANG Chen, LIU Lin, LU Zhen-bo. On the safety effects of spatially aggregated traffic flow parameters at macro-levels[J]. Advances in Mechanical Engineering, 2019, 11(1): 1-13.
    [19] GU Zi-yuan, SABERI M. A bi-partitioning approach to congestion pattern recognition in a congested monocentric city[J]. Transportation Research Part C: Emerging Technologies, 2019, 109: 305-320. doi: 10.1016/j.trc.2019.10.016
    [20] YANG Sen-yuan, WU Jian-ping, XU Yan-yan, et al. Revealing heterogeneous spatiotemporal traffic flow patterns of urban road network via tensor decomposition-based clustering approach[J]. Physica A: Statistical Mechanics and its Applications, 2019, 526(3): 120688.
    [21] 卢守峰, 陶黎明, 江勇东. 考虑连接性的路网划分算法[J]. 交通运输系统工程与信息, 2018, 18(5): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201805015.htm

    LU Shou-feng, TAO Li-ming, JIANG Yong-dong. Road network partition algorithm considering connectivity[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5): 95-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201805015.htm
    [22] SAEEDMANESH M, GEROLIMINIS N. Optimization-based clustering of traffic networks using distinct local components[C]// IEEE. 2015 IEEE 18th International Conference on Intelligent Transportation Systems. New York: IEEE, 2015: 2135-2140.
    [23] DIMITRIOU L, NIKOLAOU P. Dynamic partitioning of urban road networks based on their topological and operational characteristics[C]//IEEE. 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems. New York: IEEE, 2017: 457-462.
    [24] 尹洪英, 徐丽群, 曹永荣. 基于谱聚类算法的城市路网动态分区研究[J]. 交通信息与安全, 2010, 28(1): 16-19, 25. doi: 10.3963/j.issn.1674-4861.2010.01.004

    YIN Hong-ying, XU Li-qun, CAO Yong-hua. City transportation road network dynamic zoning based on spectral clustering algorithm[J]. Journal of Transport Information and Safety, 2010, 28(1): 16-19, 25. (in Chinese) doi: 10.3963/j.issn.1674-4861.2010.01.004
    [25] GUO Ya-juan, YANG Li-cai, HAO Shen-xue, et al. Dynamic identification of urban traffic congestion warning communities in heterogeneous networks[J]. Physica A: Statistical Mechanics and its Applications, 2019, 522(3): 98-111.
    [26] SAEEDMANESH M, GEROLIMINIS N. Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks[J]. Transportation Research Part B: Methodological, 2017, 105: 193-211. doi: 10.1016/j.trb.2017.08.021
    [27] SAEEDMANESH M, GEROLIMINIS N. On the spatial partitioning of urban transportation networks[J]. Transportation Research Part B: Methodological, 2012, 46(10): 1639-1656. doi: 10.1016/j.trb.2012.08.005
    [28] SAEEDMANESH M, GEROLIMINIS N. Clustering of heterogeneous networks with directional flows based on "Snake" similarities[J]. Transportation Research Part B: Methodological, 2016, 91: 250-269. doi: 10.1016/j.trb.2016.05.008
    [29] HOU Zhong-sheng, LI Xing-yi. Repeatability and similarity of freeway traffic flow and long-term prediction under big data[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(6): 1786-1796. doi: 10.1109/TITS.2015.2511156
    [30] PERERA S, PERERA H N, PERERA K. Topological structure of the road traffic network in the western regional megapolis, Sri Lanka[C]//IEEE. 4th International Multidisciplinary Moratuwa Engineering Research Conference. New York: IEEE, 2018: 37-42.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  789
  • HTML全文浏览量:  206
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回