留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多源数据驱动CNN-GRU模型的公交客流量分类预测

赵建东 申瑾 刘麟玮

赵建东, 申瑾, 刘麟玮. 多源数据驱动CNN-GRU模型的公交客流量分类预测[J]. 交通运输工程学报, 2021, 21(5): 265-273. doi: 10.19818/j.cnki.1671-1637.2021.05.022
引用本文: 赵建东, 申瑾, 刘麟玮. 多源数据驱动CNN-GRU模型的公交客流量分类预测[J]. 交通运输工程学报, 2021, 21(5): 265-273. doi: 10.19818/j.cnki.1671-1637.2021.05.022
ZHAO Jian-dong, SHEN Jin, LIU Lin-wei. Bus passenger flow classification prediction driven by CNN-GRU model and multi-source data[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 265-273. doi: 10.19818/j.cnki.1671-1637.2021.05.022
Citation: ZHAO Jian-dong, SHEN Jin, LIU Lin-wei. Bus passenger flow classification prediction driven by CNN-GRU model and multi-source data[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 265-273. doi: 10.19818/j.cnki.1671-1637.2021.05.022

多源数据驱动CNN-GRU模型的公交客流量分类预测

doi: 10.19818/j.cnki.1671-1637.2021.05.022
基金项目: 

国家重点研发计划项目 2018YFB1600900

国家自然科学基金项目 71871011

国家自然科学基金项目 71890972/71890970

国家自然科学基金项目 71621001

详细信息
    作者简介:

    赵建东(1975-), 男,山西忻州人,北京交通大学教授,工学博士,从事交通流研究

  • 中图分类号: U491.1

Bus passenger flow classification prediction driven by CNN-GRU model and multi-source data

Funds: 

National Key Research and Development Program of China 2018YFB1600900

National Natural Science Foundation of China 71871011

National Natural Science Foundation of China 71890972/71890970

National Natural Science Foundation of China 71621001

More Information
  • 摘要: 为精准分析公交线路与站点不同客流的出行特征及时变差异性,结合深度学习理论,提出了一种基于卷积神经网络(CNN)与门控制循环单元(GRU)组合的公交客流分类预测模型;融合匹配公交一卡通刷卡、公交车GPS轨迹、线路和站点基础信息、气象等多源数据,实现公交客流数据重构;采用K-Medians算法将乘客分为通勤类和非通勤类;以乘客类型、历史客流量、时段、高/平峰、星期、降水量、重大活动等因素为输入向量,分别建立CNN与GRU单一模型,并利用均方误差、均方根误差、平均绝对误差为评价指标,开展预测;针对单一模型不适用多特征时间序列预测等问题,分别构建了由CNN和GRU组合的线路客流和断面客流预测模型;以北京市特15路公交为例,预测工作日与非工作日场景下的线路及断面的分类客流。分析结果表明:对于通勤类和非通勤类线路及断面客流,组合模型的均方误差相比单一模型平均降低了57.932、13.106和33.987,均方根误差平均降低了1.862、1.058和1.538,平均绝对误差平均降低了1.399、0.487和0.613,可见,多源数据驱动下的CNN-GRU组合模型具有良好的预测性能。

     

  • 图  1  多源公交数据处理流程

    Figure  1.  Processing process of multi-source bus data

    图  2  两类乘客的周客流量变化

    Figure  2.  Changes in weekly passenger flow of two types of passengers

    图  3  最大断面客流量变化

    Figure  3.  Changes in passenger flow at largest cross-section

    图  4  CNN-GRU组合模型网络结构

    Figure  4.  CNN-GRU combined model network structure

    图  5  第1类客流预测结果对比

    Figure  5.  Forecast results comparison of first type of passenger flow

    图  6  第2类客流预测结果对比

    Figure  6.  Forecast results comparison of second type of passenger flow

    图  7  最大断面客流预测结果对比

    Figure  7.  Forecast results comparison of passenger flow at largest cross-section

    表  1  原始刷卡数据字段名

    Table  1.   Field name of original swipe data

    序号 字段名 中文名 具体说明
    1 GRAND_CARD_CODE 一卡通卡号
    2 LINE_CODE 线路编号
    3 ON_STATION 上车站点
    4 OFF_STATION 下车站点
    5 DEAL_TIME 交易时间 第2次刷卡时间
    6 DEAL_TYPE 交易类型 06为正常交易
    7 CARD_TYPE 卡类型 1为普通卡;
    18为老人卡;
    19为学生卡等
    8 RUN_COMP_CODE 公交运行公司编号
    9 VEHICLE_CODE 车辆编号
    10 DRIVER_CODE 驾驶人编号
    下载: 导出CSV

    表  2  公交客流主要影响因素

    Table  2.   Main influencing factors of bus passenger flow

    变量 影响因素 数据类型 数据范围
    B1 乘客类型 数值型 依据客流分类方案定
    B2 降水量 降水量
    B3 历史客流量 依据预测时间粒度选用不同历史客流量
    B4 时段 一天24 h
    B5 高/平峰 早平峰为0;早高峰为1;午平峰为2;晚高峰为3;晚平峰为4
    B6 星期 1、2、…、7
    B7 重大活动与突发事件 客流聚集为0;客流疏散为1
    下载: 导出CSV

    表  3  ARIMA、CNN、GRU、CNN-GRU模型预测误差

    Table  3.   Prediction errors of ARIMA, CNN, GRU, CNN-GRU models

    短时公交客流 模型 MSE RMSE MAE
    未分类客流 ARIMA模型[36] 573.294 23.944 16.537
    CNN模型 456.194 21.359 13.375
    GRU模型 422.867 20.564 12.986
    CNN-GRU组合模型 324.453 18.013 10.734
    第1类客流 ARIMA模型 365.236 19.111 13.963
    CNN模型 282.373 16.804 10.290
    GRU模型 259.577 16.111 9.975
    CNN-GRU组合模型 213.043 14.596 8.734
    第2类客流 ARIMA模型 61.205 7.823 4.341
    CNN模型 46.448 6.815 3.169
    GRU模型 43.735 6.613 3.403
    CNN-GRU组合模型 31.986 5.656 2.799
    最大断面客流 ARIMA模型 261.279 16.164 9.824
    CNN模型 144.721 12.030 7.296
    GRU模型 133.987 11.575 6.862
    CNN-GRU组合模型 105.367 10.265 6.466
    下载: 导出CSV
  • [1] SINGHAL A, KAMGA C, YAZICI A. Impact of weather on urban transit ridership[J]. Transportation Research Part A: Policy and Practice, 2014, 69(69): 379-391.
    [2] 林小稳, 叶霞飞. 基于天气因素的城市轨道交通接驳客流预测改进模型[J]. 城市公共交通, 2014(7): 26-29. doi: 10.3969/j.issn.1009-1467.2014.07.011

    LIN Xiao-wen, YE Xia-fei. An improved model of urban rail transit access passenger flow forecasting considering weather impact[J]. Urban Public Transport, 2014(7): 26-29. (in Chinese) doi: 10.3969/j.issn.1009-1467.2014.07.011
    [3] 刘欣彤. 降雨天气条件下短时公交客流预测研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    LIU Xin-tong. Research on short-term bus passenger demand for casting under rainy weather conditions[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [4] CUI Cheng-liang, ZHAO Ya-li, DUAN Zheng-yu. Research on the stability of public transit passenger travel behavior based on smart card data[C]//MA Jian-ming, YIN Ya-feng, HUANG He-lai, et al. COTA International Conference of Transportation Professionals. Reston: ASCE, 2014: 1318-1326.
    [5] 赵晋. 基于精细化人群分类的公交路径选择模型研究[D]. 北京: 北京工业大学, 2017.

    ZHAO Jin. Research on public transport route selection model based on meticulous population classification[D]. Beijing: Beijing University of Technology, 2017. (in Chinese)
    [6] KIEU L M, BHASKAR A, CHUNG E. Passenger segmentation using smart card data[J]. IEEE Transaction on Intelligent Transportation Systems, 2015, 16(3): 1537-1548. doi: 10.1109/TITS.2014.2368998
    [7] 何兆成, 余畅, 许敏行. 考虑出行模式和周期性的公交出行特征分析[J]. 交通运输系统工程与信息, 2016, 16(6): 135-141. doi: 10.3969/j.issn.1009-6744.2016.06.021

    HE Zhao-cheng, YU Chang, XU Min-xing. Analyzing methods of residents' travel characteristics considering travel patterns and periodicity[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(6): 135-141. (in Chinese) doi: 10.3969/j.issn.1009-6744.2016.06.021
    [8] XU Wei, QIN Yong, HUANG Hou-kuan. A new method of railway passenger flow forecasting based on spatio-temporal data mining[C]//IEEE. Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2004: 402-405.
    [9] 顾杨, 韩印, 方雪丽. 基于ARMA模型的公交枢纽站客流量预测方法研究[J]. 交通信息与安全, 2011, 29(2): 5-9. doi: 10.3963/j.ISSN1674-4861.2011.02.002

    GU Yang, HAN Yin, FANG Xue-li. Method of hub station passenger flow forecasting based on ARMA model[J]. Journal of Transport Information and Safety, 2011, 29(2): 5-9. (in Chinese) doi: 10.3963/j.ISSN1674-4861.2011.02.002
    [10] 赵阳阳, 夏亮, 江欣国. 基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型[J]. 交通运输工程学报, 2020, 20(4): 194-204. doi: 10.19818/j.cnki.1671-1637.2020.04.016

    ZHAO Yang-yang, XIA Liang, JIANG Xin-guo. Short-term metro passenger flow prediction based on EMD-LSTM[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 194-204. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.016
    [11] WANG Hai-zhong, LIU Lu, DONG Shang-jia, et al. A novel work zone short-term vehicle-type specific traffic speed prediction model through the hybrid EMD-ARIMA framework[J]. Transportmetrica B: Transport Dynamics, 2016, 4(3): 159-186. doi: 10.1080/21680566.2015.1060582
    [12] 雷定猷, 马强, 徐新平, 等. 基于非线性主成分分析和GA-RBF的高速公路交通量预测方法[J]. 交通运输工程学报, 2018, 18(3): 210-217. doi: 10.3969/j.issn.1671-1637.2018.03.022

    LEI Ding-you, MA Qiang, XU Xin-ping, et al. Forecasting method of expressway traffic volume based on NPCA and GA-RBF[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 210-217. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.03.022
    [13] TONG Gang, FAN Chun-ling, CUI Feng-ying, et al. Fuzzy neural network model applied in the traffic flow prediction[C]//IEEE. The 2006 IEEE International Conference on Information Acquisition. New York: IEEE, 2006: 1229-1233.
    [14] SUKENS J K, BRABANLER J D, LUKAS L, et al. Weighted least squares support vector machines: robustness and sparse approximation[J]. Neurocomputing, 2002, 48 (1): 85-105.
    [15] BAR-GERA H, BOYCE D. Origin-based algorithms for combined travel forecasting models[J]. Transportation Research Part B: Methodological, 2003, 37(5): 405-422. doi: 10.1016/S0191-2615(02)00020-6
    [16] ZHAO Shu-zhi, NI Tong-he, WANG Yang, et al. A new approach to the prediction of passenger flow in a transit system[J]. Computers and Mathematics with Application, 2010, 61(8): 1968-1974.
    [17] ZHANG Da-fu, ZHANG Xin-ming, WANG Jian. Commuter travel identification based on bus IC data[J]. Procedia Social and Behavioral Sciences, 2013, 96: 1547-1555. doi: 10.1016/j.sbspro.2013.08.176
    [18] 王月玥. 基于多源数据的公共交通通勤出行特征提取方法研究[D]. 北京: 北京工业大学, 2014.

    WANG Yue-yue. Research on methods of extracting commuting trip characteristic based on public transportation multi-source data[D]. Beijing: Beijing University of Technology, 2014. (in Chinese)
    [19] 柳伍生, 周向栋, 匡凯. 基于IC卡数据的公交下车站点区间不确定性客流推导方法[J]. 铁道科学与工程学报, 2018, 15(11): 2988-2994. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201811032.htm

    LIU Wu-sheng, ZHOU Xiang-dong, KUANG Kai. The method of deriving passenger flow of bus alighting stops based on smart card data and interval uncertainty[J]. Journal of Railway Science and Engineering, 2018, 15(11): 2988-2994. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201811032.htm
    [20] AKIMA H. A new method of interpolation and smooth curve fitting based on local procedures[J]. Journal of the ACM, 1970, 17(4): 589-602. doi: 10.1145/321607.321609
    [21] CERVERO R. Alternative approaches to modeling the travel-demand impacts of smart growth[J]. Journal of the American Planning Association, 2006, 72(3): 285-295. doi: 10.1080/01944360608976751
    [22] KEEMIN S, HUNJIN S. Factors generating boarding at metro station in the Seoul metropolitan area[J]. Cities, 2010, 27(5): 358-368. doi: 10.1016/j.cities.2010.05.001
    [23] 杨军, 侯忠生. 一种基于灰色马尔科夫的大客流实时预测模型[J]. 北京交通大学学报, 2013, 37(2): 119-123, 128. doi: 10.3969/j.issn.1673-0291.2013.02.022

    YANG Jun, HOU Zhong-sheng. A grey Markov based on large passenger flow real-time prediction model[J]. Journal of Beijing Jiaotong University, 2013, 37(2): 119-123, 128. (in Chinese) doi: 10.3969/j.issn.1673-0291.2013.02.022
    [24] 张旭. 基于精细化用地数据的城市轨道交通客流预测[D]. 北京: 北京交通大学, 2019.

    ZHANG Xu. Urban rail transit passenger flow forecast based on refined land use data[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
    [25] LIU Guo-jin, YIN Zhen-zhi, JIA Yun-jian, et al. Passenger flow estimation based on convolutional neural network in public transportation system[J]. Knowledge-Based Systems, 2017, 123: 102-115. doi: 10.1016/j.knosys.2017.02.016
    [26] 李令先. 基于CNN的轨道交通拥堵预测算法研究[D]. 成都: 成都理工大学, 2019.

    LI Ling-xian. Research on traffic congestion prediction algorithms based on CNN[D]. Chengdu: Chengdu University of Technology, 2019. (in Chinese)
    [27] DAI Guo-wei, MA Chang-xi, XU Xue-cai. Short-term traffic flow prediction method for urban road sections based on space-time analysis and GRU[J]. IEEE Access, 2019, 7(1): 143025-143035.
    [28] ZHAO Jian-dong, GAO Yuan, QU Yue-cai, et al. Travel time prediction: based on gated recurrent unit method and data fusion[J]. IEEE Access, 2018, 6(1): 70463-70472.
    [29] NGUYEN T, NGUYEN G, NGUYEN B M. EO-CNN: an enhanced CNN model trained by equilibrium optimization for traffic transportation prediction[J]. Procedia Computer Science, 2020, 176: 800-809. doi: 10.1016/j.procs.2020.09.075
    [30] XIONG Li-yan, ZHANG Lei, HUANG Xiao-hui, et al. DCAST: a spatiotemporal model with DenseNet and GRU based on attention mechanism[J]. Mathematical Problems in Engineering, 2021, DOI: 10.1155/2021/8867776.
    [31] LYU Yi-Sheng, DUAN Yan-Jie, KANG Wen-wen, et al. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 865-873.
    [32] ZHAO Jian-dong, GAO Yuan, BAI Zhi-ming, et al. Traffic speed prediction under non-recurrent congestion: based on LSTM method and BeiDou navigation satellite system data[J]. IEEE Intelligent Transportation Systems Magazine, 2019, 11(2): 70-81. doi: 10.1109/MITS.2019.2903431
    [33] ZHAO Jian-dong, WU Hong-qiang, CHEN Liang-liang. Road surface state recognition based on SVM optimization and image segmentation processing[J]. Journal of Advanced Transportation, 2017, https://doi.org/10.1155/2017/6458495.
    [34] GUO Dong-ning, WU Yi-hong, SHAMAI S, et al. Estimation in Gaussian noise: properties of the minimum mean-square error[J]. IEEE Transactions on Information Theory, 2011, 57(4): 2371-2385. doi: 10.1109/TIT.2011.2111010
    [35] WILLMOTT C, MATSUURA K. Advantages of the mean absolute error(MAE) over the root mean square error (RMSE) in assessing average model performance[J]. Climate Research, 2005, 30(1): 79-82.
    [36] ZHAO Jian-dong, GAO Yuan, GUO Yu-jie, et al. Travel time prediction of expressway based on multi-dimensional data and PSO-ARMAX model[J]. Advances in Mechanical Engineering, 2018, 10(2): 1-16.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1523
  • HTML全文浏览量:  401
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-28
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回