留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GPS/BDS联合解算的列车高精度实时定位方法

王剑 周子健 姜维 蔡伯根 潘佩芬

王剑, 周子健, 姜维, 蔡伯根, 潘佩芬. GPS/BDS联合解算的列车高精度实时定位方法[J]. 交通运输工程学报, 2021, 21(5): 286-296. doi: 10.19818/j.cnki.1671-1637.2021.05.024
引用本文: 王剑, 周子健, 姜维, 蔡伯根, 潘佩芬. GPS/BDS联合解算的列车高精度实时定位方法[J]. 交通运输工程学报, 2021, 21(5): 286-296. doi: 10.19818/j.cnki.1671-1637.2021.05.024
WANG Jian, ZHOU Zi-jian, JIANG Wei, CAI Bai-gen, PAN Pei-fen. High-precision real-time positioning method of train based on GPS/BDS combined solution[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 286-296. doi: 10.19818/j.cnki.1671-1637.2021.05.024
Citation: WANG Jian, ZHOU Zi-jian, JIANG Wei, CAI Bai-gen, PAN Pei-fen. High-precision real-time positioning method of train based on GPS/BDS combined solution[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 286-296. doi: 10.19818/j.cnki.1671-1637.2021.05.024

GPS/BDS联合解算的列车高精度实时定位方法

doi: 10.19818/j.cnki.1671-1637.2021.05.024
基金项目: 

国家重点研发计划项目 2018YFB1201500

国家自然科学基金项目 U1934222

国家自然科学基金项目 62027809

详细信息
    作者简介:

    王剑(1978-),男,山西隰县人,北京交通大学教授,工学博士,从事列车控制系统智能感知技术研究

    通讯作者:

    姜维(1988-),女,陕西西安人,北京交通大学教授,工学博士

  • 中图分类号: U285.24

High-precision real-time positioning method of train based on GPS/BDS combined solution

Funds: 

National Key Research and Development Program of China 2018YFB1201500

National Natural Science Foundation of China U1934222

National Natural Science Foundation of China 62027809

More Information
  • 摘要: 为了构建智能化列车运行控制体系,针对卫星导航的铁路应用,开展了列车定位优化方法的研究;利用广播星历实时特性,借助框架转换模型为系统提供实时、准确、统一的时空参考;结合误差模型校正系统中与定位相关的误差,以降低定位解算复杂度;为了进一步优化系统定位性能,提高定位精度,提出一种基于GPS/BDS多星座联合解算的非差载波相位定位方法;利用京沈高铁实际数据进行仿真,对比了单星座定位方法和多星座定位方法的信号几何分布和定位误差;为了进一步验证提出定位方法的性能,利用同一组数据,将定位结果与传统伪距单点定位结果进行对比。试验结果表明:在测试期间,GPS和BDS单星座定位方法的可见卫星平均数分别为9.2和13.4颗,几何精度因子平均数分别为2.341 7和2.272 1;GPS/BDS多星座定位方法可见卫星平均数为22.5颗,几何精度因子平均数为1.264 6,因此,多星座定位方法能够成倍增加可见卫星数,优化卫星信号几何分布,在卫星信号连续变化条件下保证精确、连续定位;在卫星信号稳定区域内,伪距单点定位和提出的定位方法在空间三维方向上的定位均方根误差分别为5.396 1、5.569 7、2.831 2和0.976 1、0.988 8、0.861 8 m,在卫星信号受限区域内,伪距单点定位和提出的定位方法在3个方向上均方根误差分别为7.245 9、7.056 3、3.756 2和1.561 2、1.603 1、1.215 5 m,因此,相比于传统伪距单点定位,提出的定位方法能够在多个场景下获得更高的定位精度。

     

  • 图  1  信号几何分布对位置精度的影响

    Figure  1.  Effect of signal geometric distributions on position accuracy

    图  2  列车运行轨迹

    Figure  2.  Train operation trajectory

    图  3  试验列车与车载设备

    Figure  3.  Experimental train and on-board equipment

    图  4  列车运行期间可见卫星数

    Figure  4.  Numbers of visible satellites during train operation

    图  5  GPS、BDS和GPS/BDS的精度因子

    Figure  5.  DOPs of GPS, BDS and GPS/BDS

    图  6  ECEF坐标系下定位结果

    Figure  6.  Positioning results in ECEF coordinate

    图  7  卫星信号受限区域的定位结果

    Figure  7.  Positioning results in satellite signal limited area

    表  1  WGS-84与CGCS2000基本参数

    Table  1.   Fundamental parameters of WGS84 and CGCS2000

    主要参数 WGS-84 CGCS2000
    基准球体长半轴/m 6 378 137 6 378 137
    基准椭球扁率 1/298.257 223 563 1/298.257 222 101
    地球自转角速度/(rad·s-1) 7.292 115 146 7×10-5 7.292 115 0×10-5
    引力与质量乘积/(m3·s-2) 3.986 005×1014 3.986 004 418×1014
    下载: 导出CSV

    表  2  测距误差源

    Table  2.   Range error sources

    与卫星相关 与传播相关 与接收机相关
    卫星钟差 电离层延时 接收机钟差
    星历误差 对流层延时 相位中心偏差
    下载: 导出CSV

    表  3  GDOP、PDOP和HDOP平均值

    Table  3.   Means of GDOP, PDOP and HDOP

    定位模式 GDOP PDOP HDOP
    GPS 2.341 7 2.039 1 1.267 4
    BDS 2.272 1 1.908 0 1.700 1
    GPS/BDS 1.264 6 1.108 1 0.884 6
    下载: 导出CSV

    表  4  SPP和ND模型三维定位均方根误差

    Table  4.   Three-dimensional positioning RMSEs of SPP and ND

    定位模型 方向1误差/m 方向2误差/m 方向3误差/m
    SPP 5.396 1 5.569 7 2.831 2
    ND 0.976 1 0.988 8 0.861 8
    下载: 导出CSV

    表  5  卫星信号受限区域三维定位均方根误差

    Table  5.   Three-dimensional positioning RMSEs in satellite signal limited area

    定位模型 方向1误差/m 方向2误差/m 方向3误差/m
    SPP 7.245 9 7.056 3 3.756 2
    ND 1.561 2 1.603 1 1.215 5
    下载: 导出CSV
  • [1] 上官伟, 袁重阳, 蔡伯根, 等. 北斗二代在西部低密度铁路中的应用[J]. 交通运输工程学报, 2016, 16(5): 132-141. doi: 10.3969/j.issn.1671-1637.2016.05.015

    SHANG GUAN Wei, YUAN Chong-yang, CAI Bai-gen, et al. Application of BDS in western low-density railway lines[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 132-141. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.05.015
    [2] SPINSANTE S, STALLO C. Hybridized-GNSS approaches to train positioning: challenges and open issues on uncertainty[J]. Sensors, 2020, 20(7): 1885. doi: 10.3390/s20071885
    [3] LI Qi, BAI Zheng-dong, CHEN Bo-bo, et al. High-speed railway track comprehensive measurement system based on GNSS/INS multi-sensor[C]//SUN Jia-dong, YANG Chang-feng, XIE Jun. China Satellite Navigation Conference 2020. Berlin: Springer, 2020: 3-14.
    [4] JIANG Wei, CHEN Si-rui, CAI Bai-gen, et al. A multi-sensor positioning method-based train localization system for low density line[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10425-10437. doi: 10.1109/TVT.2018.2869157
    [5] OTEGUI J, BAHILLO A, LOPETEGI I, et al. Evaluation of experimental GNSS and 10-DOF MEMS IMU measurements for train positioning[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(1): 269-279. doi: 10.1109/TIM.2018.2838799
    [6] 上官伟, 谢朝曦, 姜维. 基于IMU标定补偿的列车组合定位优化方法[J]. 铁道学报, 2020, 42(2): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202002008.htm

    SHANG GUAN Wei, XIE Chao-xi, JIANG Wei. Optimization method for integrated train positioning accuracy based on IMU calibration compensation[J]. Journal of the China Railway Society, 2020, 42(2): 57-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202002008.htm
    [7] HUANG Wei, DEFRAIGNE P, SIGNORILE G, et al. Improved multi-GNSS PPP software for upgrading the DEMETRA project time monitoring service[J]. Sensors, 2019, 19(20): 4389. doi: 10.3390/s19204389
    [8] 李四辉, 蔡伯根, 闻映红, 等. 基于最大期望算法的列车完整性检测方法[J]. 铁道学报, 2017, 39(2): 74-81, 89. doi: 10.3969/j.issn.1001-8360.2017.02.011

    LI Si-hui, CAI Bai-gen, WEN Ying-hong, et al. Expectation maximization algorithm based train integrity detection method[J]. Journal of the China Railway Society, 2017, 39(2): 74-81, 89. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.02.011
    [9] 王妍, 陈永刚. GPS信号失锁下的列车组合定位方法[J]. 导航定位学报, 2020, 8(4): 50-57. doi: 10.3969/j.issn.2095-4999.2020.04.009

    WANG Yan, CHEN Yong-gang. Train integration positioning method in GPS signal lost lock[J]. Journal of Navigation and Positioning, 2020, 8(4): 50-57. (in Chinese) doi: 10.3969/j.issn.2095-4999.2020.04.009
    [10] 岳朝鹏, 崔俊锋. 中国高铁列控定位技术及对北斗卫星定位应用需求[J]. 铁路通信信号工程技术, 2019, 16(3): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-TLTX201903001.htm

    YUE Chao-peng, CUI Jun-feng. Chinese high speed railway train positioning technology and application requirements for Beidou satellite positioning[J]. Railway Signalling and Communication Engineering, 2019, 16(3): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLTX201903001.htm
    [11] HEIRICH O. Bayesian train localization with particle filter, loosely coupled GNSS, IMU, and a track map[J]. Journal of Sensors, 2016, 2016: 2672640.
    [12] 杨德芳, 许伟, 万玉辉, 等. 机载高动态GPS单基站事后差分解算精度分析[J]. 测绘与空间地理信息, 2018, 41(12): 75-79, 83. doi: 10.3969/j.issn.1672-5867.2018.12.021

    YANG De-fang, XU Wei, WAN Yu-hui, et al. Post-differential calculating accuracy analysis of the high dynamic GPS single-reference station[J]. Geomatics and Spatial Information Technology, 2018, 41(12): 75-79, 83. (in Chinese) doi: 10.3969/j.issn.1672-5867.2018.12.021
    [13] NERI A, CAPUA R, SALVATORI P, et al. Track constrained RTK-like positioning for railway applications[J]. Journal of the Institute of Navigation, 2018, 65(3): 335-352. doi: 10.1002/navi.260
    [14] CAVALHERI E P, DOS SANTOS M C. Improved kinematic precise point positioning performance with the use of map constraints[J]. Journal of Applied Geodesy, 2020, 14(2): 191-204. doi: 10.1515/jag-2019-0034
    [15] JANICKA J, TOMASZEWSKI D, RAPINSKI J, et al. The prediction of geocentric corrections during communication link outages in PPP[J]. Sensors, 2020, 20(3): 602.
    [16] 彭小强, 高井祥, 王坚. WGS84和CGCS2000坐标转换研究[J]. 大地测量与地球动力学, 2015, 35(2): 219-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201502011.htm

    PENG Xiao-qiang, GAO Jing-xiang, WANG Jian. Research on coordinate transformation of WGS-84 and CGCS2000[J]. Journal of Geodesy and Geodynamics, 2015, 35(2): 219-221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201502011.htm
    [17] 高成发, 赵庆, 高旺. 基于单个GPS/BDS信标台增强的实时精密单点定位[J]. 测绘工程, 2018, 27(5): 1-4, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC201805001.htm

    GAO Cheng-fa, ZHAO Qing, GAO Wang. Real-time precise point positioning augmented with single GPS+BDS beacon reference station[J]. Engineering of Surveying and Mapping, 2018, 27(5): 1-4, 9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC201805001.htm
    [18] TU Rui, ZHANG Peng-fei, ZHANG Rui, et al. GNSS time offset monitoring based on the single difference among systems[J]. IET Radar, Sonar and Navigation. 2020, 14(2): 299-302. doi: 10.1049/iet-rsn.2019.0387
    [19] 刘丽丽, 王跃科, 陈建云, 等. 导航星座自主时间基准的相对论效应[J]. 宇航学报, 2015, 36(4): 470-476. doi: 10.3873/j.issn.1000-1328.2015.04.014

    LIU Li-li, WANG Yue-ke, CHEN Jian-yun, et al. Effects of relativity in autonomous time reference for navigation constellation[J]. Journal of Astronautics, 2015, 36(4): 470-476. (in Chinese) doi: 10.3873/j.issn.1000-1328.2015.04.014
    [20] GUO Jing, XU Xiao-long, ZHAO Qi-le, et al. Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison[J]. Journal of Geodesy, 2016, 90(2): 143-159
    [21] LIU Zhi-qiang, YUE Dong-jie, HUANG Zhang-yu, et al. Performance of real-time undifferenced precise positioning assisted by remote IGS multi-GNSS stations[J]. GPS Solutions, 2020, 24: 58.
    [22] LU De-biao, CAI Bai-gen. Case study of differential-GPS safety integrity performance on Qinghai-Tibet railway line[C]//RAK J, BERBINEAU M, MARAIS J, et al. 2017 15th International Conference on ITS Telecommunications. New York: IEEE, 2017: 17014756.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  973
  • HTML全文浏览量:  385
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-21
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回