[1] |
彭其渊, 李建光, 杨宇翔, 等. 高速铁路建设对我国铁路运输的影响[J]. 西南交通大学学报, 2016, 51(3): 525-533. doi: 10.3969/j.issn.0258-2724.2016.03.011PENG Qi-yuan, LI Jian-guang, YANG Yu-xiang, et al. Influences of high-speed railway construction on railway transportation of China[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 525-533. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.03.011
|
[2] |
贾利民, 秦勇, 李平. 新一代轨道智能运输系统总体框架与关键技术[J]. 中国铁路, 2015(4): 14-19, 60. doi: 10.3969/j.issn.1001-683X.2015.04.003JIA Li-min, QIN Yong, LI Ping. The overall framework and key technologies of a new generation of rail intelligent transportation system[J]. China Railways, 2015(4): 14-19, 60. (in Chinese) doi: 10.3969/j.issn.1001-683X.2015.04.003
|
[3] |
白彦超, 安超, 李明高, 等. CRH3型动车组武广客运专线服役性能跟踪研究[J]. 铁道机车与动车, 2018(1): 37-40, 43. https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201801011.htmBAI Yan-chao, AN Chao, LI Ming-gao, et al. Tracking research on service performance of CRH3 EMU in Wuhan-Guangzhou Passenger Dedicated Line[J]. Railway Locomotive and Motor Car, 2018(1): 37-40, 43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201801011.htm
|
[4] |
田永洙, 沙淼, 史学玲, 等. 动车组牵引系统服役安全性评估方法与标准研究[J]. 铁道车辆, 2015, 53(3): 21-24. doi: 10.3969/j.issn.1002-7602.2015.03.005TIAN Yong-zhu, SHA Miao, SHI Xue-ling, et al. The safety evaluation method for service of traction system on multiple units and research on standards[J]. Rolling Stock, 2015, 53(3): 21-24. (in Chinese) doi: 10.3969/j.issn.1002-7602.2015.03.005
|
[5] |
吴萌岭, 王孝延, 严凯军. 微机控制直通电空制动系统的FMEA和FTA分析[J]. 机车电传动, 2008(1): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC200801007.htmWU Meng-ling, WANG Xiao-yan, YAN Kai-jun. Analysis by FMEA and FTA method of micro-computer controlled directacting electro-pneumatic braking system[J]. Electric Drive for Locomotives, 2008(1): 32-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC200801007.htm
|
[6] |
战成一, 程光华, 王孝延, 等. 微机控制直通电空制动系统用阀试验研究[J]. 城市轨道交通研究, 2008, 11(3): 30-34. doi: 10.3969/j.issn.1007-869X.2008.03.008ZHAN Cheng-yi, CHENG Guang-hua, WANG Xiao-yan, et al. A test of valves in micro-computer controlled braking system[J]. Urban Mass Transit, 2008, 11(3): 30-34. (in Chinese) doi: 10.3969/j.issn.1007-869X.2008.03.008
|
[7] |
PERIS E, GOIKOETXEA J. Roll2Rail: new dependable rolling stock for a more sustainable, intelligent and comfortable rail transport in Europe[J]. Transportation Research Procedia, 2016, 14: 567-574. doi: 10.1016/j.trpro.2016.05.294
|
[8] |
缪炳荣, 张卫华, 池茂儒, 等. 下一代高速列车关键技术特征分析及展望[J]. 铁道学报, 2019, 41(3): 58-70. doi: 10.3969/j.issn.1001-8360.2019.03.008MIAO Bing-rong, ZHANG Wei-hua, CHI Mao-ru, et al. Analysis and prospects of key technical features of next generation high speed trains[J]. Journal of the China Railway Society, 2019, 41(3): 58-70. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.03.008
|
[9] |
李小军, 刘宗祝, 张雷, 等. 智能化高速列车方案设计与研究[C]//中国智能交通协会. 第八届中国智能交通年会优秀论文集——轨道交通. 北京: 电子工业出版社, 2013: 455-460.LI Xiao-jun, LIU Zong-zhu, ZHANG Lei, et al. Scheme design and research of intelligent high-speed train[C]//China Intelligent Transportation Association. Proceedings of the 8th China Intelligent Transportation Annual Conference—Rail Transit. Beijing: Publishing House of Electronics Industry, 2013: 455-460. (in Chinese)
|
[10] |
HALTUF M. Shift2Rail JU from member state's point of view[J]. Transportation Research Procedia, 2016, 14: 1819-1828. doi: 10.1016/j.trpro.2016.05.148
|
[11] |
吴萌岭, 马天和, 田春, 等. 列车制动技术发展趋势探讨[J]. 中国铁道科学, 2019, 40(1): 134-144. doi: 10.3969/j.issn.1001-4632.2019.01.18WU Meng-ling, MA Tian-he, TIAN Chun, et al. Discussion on development trend of train braking technology[J]. China Railway Science, 2019, 40(1): 134-144. (in Chinese) doi: 10.3969/j.issn.1001-4632.2019.01.18
|
[12] |
吴萌岭, 周嘉俊, 田春, 等. 轨道交通制动系统创新技术[J]. 现代城市轨道交通, 2019(7): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201907007.htmWU Meng-ling, ZHOU Jia-jun, TIAN Chun, et al. Innovative technology of rail transit braking system[J]. Modern Urban Transit, 2019(7): 30-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201907007.htm
|
[13] |
刘豫湘, 方长征, 万建兵. 列车制动系统技术现状及发展趋势[J]. 电力机车与城轨车辆, 2014, 37(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201405003.htmLIU Yu-xiang, FANG Chang-zheng, WAN Jian-bing. Technology status and development trend of train braking system[J]. Electric Locomotives and Mass Transit Vehicles, 2014, 37(5): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201405003.htm
|
[14] |
吴萌岭, 程光华, 王孝延, 等. 列车制动减速度控制问题的探讨[J]. 铁道学报, 2009, 31(1): 94-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200901023.htmWU Meng-ling, CHENG Guang-hua, WANG Xiao-yan, et al. Discussion of braking deceleration control of railway vehicles[J]. Journal of the China Railway Society, 2009, 31(1): 94-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200901023.htm
|
[15] |
ISHIZAKA K, LEWIS S R, LEWIS R. The low adhesion problem due to leaf contamination in the wheel/rail contact: bonding and low adhesion mechanisms[J]. Wear, 2017, 378/379: 183-197. doi: 10.1016/j.wear.2017.02.044
|
[16] |
WHITE B T, NILSSON R, OLOFSSON U, et al. Effect of the presence of moisture at the wheel-rail interface during dew and damp conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(4): 979-989. doi: 10.1177/0954409717706251
|
[17] |
戚壮, 李芾, 丁军君. 货车极限黏着制动优化方法[J]. 交通运输工程学报, 2012, 12(6): 35-40, 54. doi: 10.3969/j.issn.1671-1637.2012.06.006QI Zhuang, LI Fu, DING Jun-jun. Braking optimization method of wagon under limit adhesion[J]. Journal of Traffic and Transportation Engineering, 2012, 12(6): 35-40, 54. (in Chinese) doi: 10.3969/j.issn.1671-1637.2012.06.006
|
[18] |
WU Bing, AN Bo-yang, WEN Ze-feng, et al. Wheel-rail low adhesion issues and its effect on wheel-rail material damage at high speed under different interfacial contaminations[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(15): 5477-5490. doi: 10.1177/0954406219842285
|
[19] |
罗仁, 曾京. 铁道车辆防滑控制仿真[J]. 机械工程学报, 2008, 44(3): 29-34. doi: 10.3321/j.issn:0577-6686.2008.03.005LUO Ren, ZENG Jing. Anti-sliding control simulation of railway vehicle braking[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 29-34. (in Chinese) doi: 10.3321/j.issn:0577-6686.2008.03.005
|
[20] |
李江红, 马健, 彭辉水. 机车粘着控制的基本原理和方法[J]. 机车电传动, 2002(6): 4-8. doi: 10.3969/j.issn.1000-128X.2002.06.002LI Jiang-hong, MA Jian, PENG Hui-shui. Basic principle and methods of adhesion control of locomotive[J]. Electric Drive for Locomotive, 2002(6): 4-8. (in Chinese) doi: 10.3969/j.issn.1000-128X.2002.06.002
|
[21] |
ZUO Jian-yong, CHEN Zhong-kai. Antiskid control of railway train braking based on adhesion creep behavior[J]. Chinese Journal of Mechanical Engineering, 2012, 25(3): 543-549. doi: 10.3901/CJME.2012.03.543
|
[22] |
张鸿斐, 王文健, 申鹏, 等. 油介质条件下轮轨黏着特性的试验研究[J]. 中国铁道科学, 2012, 33(4): 65-68. doi: 10.3969/j.issn.1001-4632.2012.04.11ZHANG Hong-fei, WANG Wen-jian, SHEN Peng, et al. Experimental study on wheel/rail adhesion characteristics under oil medium condition[J]. China Railway Science, 2012, 33(4): 65-68. doi: 10.3969/j.issn.1001-4632.2012.04.11
|
[23] |
吴萌岭, 周嘉俊, 马天和, 等. 水介质下轮轨制动黏着试验研究[J]. 铁道机车车辆, 2021, 41(5): 139-143. doi: 10.3969/j.issn.1008-7842.2021.05.24WU Meng-ling, ZHOU Jia-jun, MA Tian-he, et al. Experimental study on wheel-rail brake adhesion under water condition[J]. Railway Locomotive and Car, 2021, 41(5): 139-143. doi: 10.3969/j.issn.1008-7842.2021.05.24
|
[24] |
ZHOU Jia-jun, WU Meng-ling, TIAN Chun, et al. Experimental investigation on wheel-rail adhesion characteristics under water and large sliding conditions[J]. Industrial Lubrication and Tribology, 2021, 73(2): 366-372. doi: 10.1108/ILT-07-2020-0236
|
[25] |
SHEN Z Y, HEDRICK J K, ELKINS J A. A comparison of alternative creep force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12(1/2/3): 79-83. doi: 10.1080/00423118308968725
|
[26] |
JIN Xue-song, WU Ping-bo, WEN Ze-feng. Effects of structure elastic deformations of wheelset and track on creep forces of wheel/rail in rolling contact[J]. Wear, 2002, 253(1/2): 247-256. https://www.sciencedirect.com/science/article/pii/S0043164802001084
|
[27] |
SHRESTHA S, SPIRYAGIN M, WU Q. Friction condition characterization for rail vehicle advanced braking system[J]. Mechanical Systems and Signal Processing, 2019, 134: 106324. doi: 10.1016/j.ymssp.2019.106324
|
[28] |
KIM Y M, KIM Y G, KIM S W, et al. Estimation of the adhesion force for a disc brake in a skid control condition[J]. International Journal of Automotive Technology, 2010, 11(5): 673-680. doi: 10.1007/s12239-010-0080-7
|
[29] |
顾博川. 基于奇异值分解强跟踪滤波的机车黏着系数估计[J]. 铁道机车车辆, 2011, 31(4): 26-30. doi: 10.3969/j.issn.1008-7842.2011.04.006GU Bo-chuan. Locomotive adhesion coefficient estimation based on SVD strong track filter[J]. Railway Locomotive and Car, 2011, 31(4): 26-30. (in Chinese) doi: 10.3969/j.issn.1008-7842.2011.04.006
|
[30] |
李宁洲, 冯晓云. 基于自适应子群协作QPSO算法的机车黏着智能模糊优化控制[J]. 中国铁道科学, 2014, 35(4): 100-107. doi: 10.3969/j.issn.1001-4632.2014.04.15LI Ning-zhou, FENG Xiao-yun. Intelligent fuzzy optimal control of locomotive adhesion based on adaptive multiple subgroup collaboration QPSO algorithm[J]. China Railway Science, 2014, 35(4): 100-107. (in Chinese) doi: 10.3969/j.issn.1001-4632.2014.04.15
|
[31] |
吴萌岭, 彭顺, 李小平. 列车轮轨黏着力在线估测计算方法[J]. 同济大学学报(自然科学版), 2018, 46(3): 354-358, 388. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201803012.htmWU Meng-ling, PENG Shun, LI Xiao-ping. Online estimation algorithm of adhesive force for train wheeltrack[J]. Journal of Tongji University (Natural Science), 2018, 46(3): 354-358, 388. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201803012.htm
|
[32] |
马天和, 吴萌岭, 田春. 基于黏着力观测器的列车空气制动防滑控制[J]. 同济大学学报(自然科学版), 2020, 48(11): 1668-1675. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202011016.htmMA Tian-he, WU Meng-ling, TIAN Chun. Anti-skid control based on adhesion force observer for train pneumatic braking[J]. Journal of Tongji University (Natural Science), 2020, 48(11): 1668-1675. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202011016.htm
|
[33] |
魏伟, 王强. 坡道上重载列车纵向冲动研究[J]. 振动与冲击, 2014, 33(5): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201405027.htmWEI Wei, WANG Qiang. Influence of train brake on longitudinal impulse of a heavy haul train passing through a ramp[J]. Journal of Vibration and Shock, 2014, 33(5): 143-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201405027.htm
|
[34] |
魏伟, 胡杨. 列尾装置对重载列车纵向力的影响[J]. 交通运输工程学报, 2012, 12(5): 43-49, 63. doi: 10.3969/j.issn.1671-1637.2012.05.006WEI Wei, HU Yang. Influence of train tail exhaust device on longitudinal force of train[J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 43-49, 63. (in Chinese) doi: 10.3969/j.issn.1671-1637.2012.05.006
|
[35] |
刘海东, 苏梅, 彭宏勤, 等. 城市轨道交通列车制动问题研究[J]. 交通运输系统工程与信息, 2011, 11(6): 93-97. doi: 10.3969/j.issn.1009-6744.2011.06.014LIU Hai-dong, SU Mei, PENG Hong-qin, et al. Braking performances of urban rail trains[J]. Journal of Transportation Systems Engineering and Information Technology, 2011, 11(6): 93-97. doi: 10.3969/j.issn.1009-6744.2011.06.014
|
[36] |
赵建飞. 基于减速度控制的新一代地铁车辆制动控制技术[J]. 现代城市轨道交通, 2019(11): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201911008.htmZHAO Jian-fei. Braking control technology of new generation metro vehicle based on deceleration control[J]. Modern Urban Transit, 2019(11): 39-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201911008.htm
|
[37] |
南京政信, 彭惠民. 具备减速度反馈功能的制动装置的开发[J]. 国外机车车辆工艺, 2013(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ201302004.htmNANJING Zheng-xin, PENG Hui-min. Development of a braking device equipped with deceleration feedback function[J]. Foreign Locomotive and Rolling Stock Technology, 2013(2): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ201302004.htm
|
[38] |
NANKYO M, ISHIHARA T, INOOKA H. Feedback control of braking deceleration on railway vehicle[J]. Journal of Dynamic Systems, Measurement, and Control, 2006, 128(2): 244-250. doi: 10.1115/1.2192825
|
[39] |
NANKYO M, ISHIHARA T, INOOKA H. Feedback control of brake system on railway vehicle considering non-linear property and dead time[C]//ASME. 2003 ASME International Mechanical Engineering Congress. New York: ASME, 2003: 99-104.
|
[40] |
张梦楠, 徐洪泽. 基于Krasovskii泛函的城轨列车制动控制器设计[J]. 吉林大学学报(工学版), 2015, 45(1): 104-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201501016.htmZHANG Meng-nan, XU Hong-ze. Design of urban rail vehicle brake controller based on Krasovskii functionals[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(1): 104-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201501016.htm
|
[41] |
吴萌岭, 罗卓军. 基于自适应参数估计的列车制动减速度控制[J]. 铁道学报, 2015, 37(8): 8-16. doi: 10.3969/j.issn.1001-8360.2015.08.002WU Meng-ling, LUO Zhuo-jun. Study on train braking deceleration feedback control based on adaptive parameter estimation[J]. Journal of the China Railway Society, 2015, 37(8): 8-16. (in Chinese) doi: 10.3969/j.issn.1001-8360.2015.08.002
|
[42] |
周嘉俊, 吴萌岭, 刘宇康, 等. 基于改进史密斯预估器的列车制动减速度控制研究[J]. 同济大学学报(自然科学版), 2020, 48(11): 1657-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202011015.htmZHOU Jia-jun, WU Meng-ling, LIU Yu-kang, et al. Train braking deceleration control based on improved Smith estimator[J]. Journal of Tongji University (Natural Science), 2020, 48(11): 1657-1667. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202011015.htm
|
[43] |
邓力铭. 动车组故障模式统计分析[D]. 北京: 中国铁道科学研究院, 2015.DENG Li-ming. Fault mode statistic and analysis of EMU[D]. Beijing: China Academy of Railway Sciences, 2015. (in Chinese)
|
[44] |
辛志强, 许文瑶, 乔峰. 和谐号动车组中继阀故障筛查方法[J]. 铁道机车车辆, 2017, 37(3): 94-96. doi: 10.3969/j.issn.1008-7842.2017.03.23XIN Zhi-qiang, XU Wen-yao, QIAO Feng. Fault screening process for relay valve of CRH EMUs[J]. Railway Locomotive and Car, 2017, 37(3): 94-96. (in Chinese) doi: 10.3969/j.issn.1008-7842.2017.03.23
|
[45] |
左建勇, 韩飞, 胡薇. 地铁列车紧急制动故障特征再现仿真[J]. 交通运输工程学报, 2015, 15(5): 44-49, 56. doi: 10.3969/j.issn.1671-1637.2015.05.006ZUO Jian-yong, HAN Fei, Hu Wei. Reproduction simulation of emergency brake fault feature for subway train[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 44-49, 56. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.05.006
|
[46] |
周斌, 谢名源, 吴克明. 动车组维修体制现状分析及展望[J]. 机车电传动, 2017(1): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201701006.htmZHOU Bin, XIE Ming-yuan, WU Ke-ming. Analysis and prediction on the current situation of the repair class and repair system of electric multiple units (EMU)[J]. Electric Drive for Locomotives, 2017(1): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201701006.htm
|
[47] |
常振臣, 张海峰. 动车组PHM技术应用现状及展望[J]. 电力机车与城轨车辆, 2016, 39(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201601001.htmCHANG Zhen-chen, ZHANG Hai-feng. Application state and prospects of PHM technology on EMU[J]. Electric Locomotives and Mass Transit Vehicles, 2016, 39(1): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201601001.htm
|
[48] |
台秀华, 郭天序, 张颖佳, 等. 制动系统故障预测与健康管理技术研究[J]. 铁道车辆, 2018, 56(11): 5-8. doi: 10.3969/j.issn.1002-7602.2018.11.003TAI Xiu-hua, GUO Tian-xu, ZHANG Ying-jia, et al. Technical research on prognostics and health management for braking systems[J]. Rolling Stock, 2018, 56 (11): 5-8. (in Chinese) doi: 10.3969/j.issn.1002-7602.2018.11.003
|
[49] |
梁建英. 高速列车智能诊断与故障预测技术研究[J]. 北京交通大学学报, 2019, 43(1): 63-70. doi: 10.11860/j.issn.1673-0291.2019.01.007LIANG Jian-ying. Research on intelligent diagnosis and fault prediction technology for high speed trains[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 63-70. (in Chinese) doi: 10.11860/j.issn.1673-0291.2019.01.007
|
[50] |
刘志亮, 潘登, 左明健, 等. 轨道车辆故障诊断研究进展[J]. 机械工程学报, 2016, 52(14): 134-146. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201614015.htmLIU Zhi-liang, PAN Deng, ZUO Ming-jian, et al. A review on fault diagnosis for rail vehicles[J]. Journal of Mechanical Engineering, 2016, 52(14): 134-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201614015.htm
|
[51] |
章阳. 动车组制动系统PHM方案研究[J]. 铁道机车车辆, 2020, 40(5): 19-22. doi: 10.3969/j.issn.1008-7842.2020.05.04ZHANG Yang. Research on PHM scheme of EMU brake system[J]. Railway Locomotive and Car, 2020, 40(5): 19-22. (in Chinese) doi: 10.3969/j.issn.1008-7842.2020.05.04
|
[52] |
刘元清, 耿晓峰, 祁成. 城市轨道交通制动系统PHM技术研究与应用[J]. 现代城市轨道交通, 2019(9): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201909004.htmLIU Yuan-qing, GENG Xiao-feng, QI Cheng. Research and application of braking system with PHM technology in urban rail transit[J]. Modern Urban Transit, 2019(9): 24-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201909004.htm
|
[53] |
高殿柱, 张石峰, 刘伟荣. 机车制动系统可预测维修关键技术与系统实现[J]. 电力机车与城轨车辆, 2018, 41(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201802001.htmGAO Dian-zhu, ZHANG Shi-feng, LIU Wei-rong. Key technologies and system implementation of predictable maintenance of locomotive braking system[J]. Electric Locomotives and Mass Transit Vehicles, 2018, 41(2): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201802001.htm
|
[54] |
左建勇, 刘寅虎, 丁景贤, 等. 高速列车制动系统故障识别与诊断维护[J]. 铁道机车车辆, 2021, 41(5): 156-162. doi: 10.3969/j.issn.1008-7842.2021.05.27ZUO Jian-yong, LIU Yin-hu, DING Jing-xian, et al. Fault identification diagnosis and maintenance for high-speed train braking system[J]. Railway Locomotive and Car, 2021, 41(5): 156-162. doi: 10.3969/j.issn.1008-7842.2021.05.27
|
[55] |
高敏, 王雪梅, 倪文波. 基于S3C2410X的车辆制动监测装置研制[J]. 中国测试技术, 2007, 33(5): 142-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS200705044.htmGAO Min, WANG Xue-mei, NI Wen-bo. Study on vehicle braking monitor device based on S3C2410X[J]. China Measurement Technology, 2007, 33(5): 142-144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS200705044.htm
|
[56] |
李万新, 章阳, 林荣文, 等. 和谐号动车组制动系统故障诊断及安全措施[J]. 铁道机车车辆, 2011, 31(5): 39-42. doi: 10.3969/j.issn.1008-7842.2011.05.008LI Wan-xin, ZHANG Yang, LIN Rong-wen, et al. Fault diagnosis and safety measures of EMU braking system[J]. Railway Locomotive and Car, 2011, 31(5): 39-42. (in Chinese) doi: 10.3969/j.issn.1008-7842.2011.05.008
|
[57] |
张永春. 机车制动系统实时监测与故障诊断专家系统[J]. 计算机测量与控制, 2013, 21(10): 2615-2617, 2620. doi: 10.3969/j.issn.1671-4598.2013.10.002ZHANG Yong-chun. Real-time monitoring and fault diagnosis expert system for locomotive braking system[J]. Computer Measurement and Control, 2013, 21(10): 2615-2617, 2620. (in Chinese) doi: 10.3969/j.issn.1671-4598.2013.10.002
|
[58] |
阚佳钰. 基于矢量量化的列车闸片温度状态监测方法研究[D]. 北京: 北京交通大学, 2015.KAN Jia-yu. Research on the methods of condition monitoring based on vector quantization for train brake pad temperature[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese)
|
[59] |
ZUO Jian-yong, DING Jing-xian, HU Wei, et al. Performance degradation monitoring based on data fusion method for in-service train pneumatic brake system[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(6): 1924-1938. doi: 10.1177/0954406218778882
|
[60] |
朱建渠, 金炜东, 郑高, 等. 基于多源信息的高速列车走行部故障识别方法[J]. 振动与冲击, 2014, 33(21): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201421033.htmZHU Jian-qu, JIN Wei-dong, ZHENG Gao, et al. High-speed train running gear fault recognition based on information fusion of multi-source[J]. Journal of Vibration and Shock, 2014, 33(21): 183-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201421033.htm
|
[61] |
周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述[J]. 自动化学报, 2013, 39(11): 1933-1943. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201311020.htmZHOU Dong-hua, LIU Yang, HE Xiao. Review on fault diagnosis techniques for closed-loop systems[J]. Acta Automatica Sinica, 2013, 39(11): 1933-1943. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201311020.htm
|
[62] |
ZUO Jian-yong, CHEN Zhong-kai. Sensor configuration and test for fault diagnoses of subway braking system based on signed digraph method[J]. Chinese Journal of Mechanical Engineering, 2014, 27(3): 475-482. doi: 10.3901/CJME.2014.03.475
|
[63] |
田静宜, 杨业, 杨雪峰, 等. 高速列车智能化故障诊断方法[J]. 化工自动化及仪表, 2013, 40(4): 531-533. doi: 10.3969/j.issn.1000-3932.2013.04.027TIAN Jing-yi, YANG Ye, YANG Xue-feng, et al. Intelligent fault diagnosis method for high-speed trains[J]. Control and Instruments in Chemical Industry, 2013, 40(4): 531-533. (in Chinese) doi: 10.3969/j.issn.1000-3932.2013.04.027
|
[64] |
牟增旭. 动车组制动状态监测和故障诊断系统软件研究[D]. 成都: 西南交通大学, 2013.MOU Zeng-xu. Software design of condition monitoring and fault diagnosis for EMUs brake system[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese)
|
[65] |
刘德东. 城轨车辆制动系统的监测与故障诊断系统研究[D]. 北京: 北京建筑大学, 2014.LIU De-dong. Research on the monitoring and fault diagnosis system of urban rail vehicle braking system[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2014. (in Chinese)
|
[66] |
张涛. CCBⅡ制动机综合诊断装置的研究[J]. 电气技术, 2009(4): 61-65. doi: 10.3969/j.issn.1673-3800.2009.04.018ZHANG Tao. CCBⅡ brake based on multi-hierarchy fuzzy evaluation[J]. Electrical Engineering, 2009(4): 61-65. (in Chinese) doi: 10.3969/j.issn.1673-3800.2009.04.018
|
[67] |
丁国君, 王立德, 申萍, 等. 基于EEMD能量熵和LSSVM的传感器故障诊断[J]. 传感器与微系统, 2013, 32(7): 22-25. doi: 10.3969/j.issn.1000-9787.2013.07.007DING Guo-jun, WANG Li-de, SHEN Ping, et al. Sensor fault diagnosis based on EEMD energy entropy and LSSVM[J]. Transducer and Microsystem Technologies, 2013, 32(7): 22-25. (in Chinese) doi: 10.3969/j.issn.1000-9787.2013.07.007
|
[68] |
LIU J, LI Y F, ZIO E. A SVM framework for fault detection of the braking system in a high speed train[J]. Mechanical Systems and Signal Processing, 2017, 87: 401-409. doi: 10.1016/j.ymssp.2016.10.034
|
[69] |
LIU J, ZIO E. A scalable fuzzy support vector machine for fault detection in transportation systems[J]. Expert Systems With Applications, 2018, 102: 36-43. doi: 10.1016/j.eswa.2018.02.017
|
[70] |
ZUO Jian-yong, DING Jing-xian, FENG Fu-ren. Latent leakage fault identification and diagnosis based on multi-source information fusion method for key pneumatic units in Chinese standard electric multiple units (EMU) braking system[J]. Applied Sciences, 2019, 9(2): 300. doi: 10.3390/app9020300
|
[71] |
裴迪. 基于贝叶斯网络的货车空气制动系统故障诊断研究[D]. 北京: 北京交通大学, 2018.PEI Di. Research on fault diagnosis of railway wagon air brake system based on Bayesian network[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
|
[72] |
严书荣. 列车制动故障诊断专家系统关键技术研究及应用[D]. 大连: 大连交通大学, 2011.YAN Shu-rong. Research and application on key technologies of fault diagnosis expert system for train brake[D]. Dalian: Dalian Jiaotong University, 2011. (in Chinese)
|
[73] |
侯文明. HXD1型机车制动系统故障在线诊断技术的研究与应用[D]. 长沙: 中南大学, 2010.HOU Wen-ming. Research and application of fault online diagnosis technology for brake system of HXD1 locomotive[D]. Changsha: Central South University, 2010. (in Chinese)
|
[74] |
NIU Gang, XIONG Liu-jing, QIN Xiao-xiao, et al. Fault detection isolation and diagnosis of multi-axle speed sensors for high-speed trains[J]. Mechanical Systems and Signal Processing, 2019, 131: 183-198. doi: 10.1016/j.ymssp.2019.05.053
|
[75] |
牛刚, 曹雪杰, 秦肖肖. 高速列车双通道速度传感器故障检测与隔离研究[J]. 仪器仪表学报, 2019, 40(1): 158-165. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201901020.htmNIU Gang, CAO Xue-jie, QIN Xiao-xiao. Research on fault detection and isolation of dual channel speed sensor for high-speed train[J]. Chinese Journal of Scientific Instrument, 2019, 40(1): 158-165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201901020.htm
|
[76] |
鲁进军, 吴萌岭, 牛刚. 轨道交通制动系统速度传感器的故障诊断方法研究[J]. 铁道学报, 2021, 43(1): 85-93. doi: 10.3969/j.issn.1001-8360.2021.01.010LU Jin-jun, WU Meng-ling, NIU Gang. Research on fault diagnosis method of speed sensor for brake system of rail transit vehicles[J]. Journal of the China Railway Society, 2021, 43(1): 85-93. (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.01.010
|
[77] |
ZHOU Dong-hua, JI Hong-quan, HE Xiao, et al. Fault detection and isolation of the brake cylinder system for electric multiple units[J]. IEEE Transactions on Control Systems Technology, 2018, 26(5): 1744-1757. doi: 10.1109/TCST.2017.2718979
|
[78] |
SEO B, JO S H, OH H, et al. Solenoid valve diagnosis for railway braking systems with embedded sensor signals and physical interpretation[C]//Prognostics and Health Management Society. 2016 Annual Conference of the Prognostics and Health Management Society. New York: Prognostics and Health Management Society, 2016: 337-343.
|
[79] |
AN D, KIM N H, CHOI J H. Practical options for selecting data-driven or physics-based prognostics algorithms with reviews[J]. Reliability Engineering and System Safety, 2015, 133: 223-236. doi: 10.1016/j.ress.2014.09.014
|
[80] |
BARALDI P, CADINI F, MANGILI F, et al. Model-based and data-driven prognostics under different available information[J]. Probabilistic Engineering Mechanics, 2013, 32: 66-79. doi: 10.1016/j.probengmech.2013.01.003
|
[81] |
LEI Ya-guo, LI Nai-peng, GONTARZ S, et al. A model-based method for remaining useful life prediction of machinery[J]. IEEE Transactions on Reliability, 2016, 65(3): 1314-1326. doi: 10.1109/TR.2016.2570568
|
[82] |
DAIGLE M J, GOEBEL K. A model-based prognostics approach applied to pneumatic valves[J]. International Journal of Prognostics and Health Management, 2011, 2(2): 1-16. http://matthewjdaigle.com/pubs/DaigleEtAl-IJPHM-Valves.pdf
|
[83] |
高泽海, 马存宝, 宋东. 飞机燃油供油系统性能退化与故障预测[J]. 西北工业大学学报, 2015, 33(2): 209-215. doi: 10.3969/j.issn.1000-2758.2015.02.007GAO Ze-hai, MA Cun-bao, SONG Dong. Aircraft fuel feeding system performance degradation and failure prediction[J]. Journal of Northwestern Polytechnical University, 2015, 33(2): 209-215. (in Chinese) doi: 10.3969/j.issn.1000-2758.2015.02.007
|
[84] |
NIU Gang, HUANG Xiao-fan. Failure prognostics of locomotive electro-pneumatic brake based on bond graph modeling[J]. IEEE Access, 2017, 5: 15030-15039. https://ieeexplore.ieee.org/document/8002563/
|
[85] |
LUO Jian-hui, PATTIPATI K R, QIAO Liu, et al. Model-based prognostic techniques applied to a suspension system[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 2008, 38(5): 1156-1168. https://ieeexplore.ieee.org/document/4604823/
|
[86] |
赵申坤, 姜潮, 龙湘云. 一种基于数据驱动和贝叶斯理论的机械系统剩余寿命预测方法[J]. 机械工程学报, 2018, 54(12): 115-124. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201812016.htmZHAO Shen-kun, JIANG Chao, LONG Xiang-yun. Remaining useful life estimation of mechanical systems based on the data-driven method and Bayesian theory[J]. Journal of Mechanical Engineering, 2018, 54(12): 115-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201812016.htm
|
[87] |
申中杰, 陈雪峰, 何正嘉, 等. 基于相对特征和多变量支持向量机的滚动轴承剩余寿命预测[J]. 机械工程学报, 2013, 49(2): 183-189. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201302030.htmSHEN Zhong-jie, CHEN Xue-feng, HE Zheng-jia, et al. Remaining life predictions of rolling bearing based on relative features and multivariable support vector machine[J]. Journal of Mechanical Engineering, 2013, 49(2): 183-189. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201302030.htm
|
[88] |
YOU G W, PARK S, OH D. Real-time state-of-health estimation for electric vehicle batteries: a data-driven approach[J]. Applied Energy, 2016, 176: 92-103. https://www.sciencedirect.com/science/article/abs/pii/S0306261916306456
|
[89] |
ZUO Jian-yong, FENG Fu-ren, HE Yi-xin. Research and application of train online health status detection based on feedforward neural network[J]. Journal of Physics: Conference Series, 2021, 1828(1): 012034. doi: 10.1088/1742-6596/1828/1/012034
|
[90] |
ZUO Jian-yong, ZHAO Tie-feng, WANG Bing-zheng, et al. Analysis of service condition and influence of metro brake system based on stream data processing method[C]//ASME. Proceedings of the 2018 Joint Rail Conference. New York: ASME, 2018: 1-4.
|