留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料粘接结构强度与环境耐久性综述

那景新 王广彬 庄蔚敏 慕文龙 徐千卉

那景新, 王广彬, 庄蔚敏, 慕文龙, 徐千卉. 复合材料粘接结构强度与环境耐久性综述[J]. 交通运输工程学报, 2021, 21(6): 78-93. doi: 10.19818/j.cnki.1671-1637.2021.06.006
引用本文: 那景新, 王广彬, 庄蔚敏, 慕文龙, 徐千卉. 复合材料粘接结构强度与环境耐久性综述[J]. 交通运输工程学报, 2021, 21(6): 78-93. doi: 10.19818/j.cnki.1671-1637.2021.06.006
NA Jing-xin, WANG Guang-bin, ZHUANG Wei-min, MU Wen-long, XU Qian-hui. Review on strength and environmental durability of composite adhesive structures[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 78-93. doi: 10.19818/j.cnki.1671-1637.2021.06.006
Citation: NA Jing-xin, WANG Guang-bin, ZHUANG Wei-min, MU Wen-long, XU Qian-hui. Review on strength and environmental durability of composite adhesive structures[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 78-93. doi: 10.19818/j.cnki.1671-1637.2021.06.006

复合材料粘接结构强度与环境耐久性综述

doi: 10.19818/j.cnki.1671-1637.2021.06.006
基金项目: 

国家自然科学基金项目 51775230

国家自然科学基金项目 51775227

国家自然科学基金项目 51375201

吉林大学博士研究生交叉学科科研资助计划 101832020DJX038

吉林大学研究生创新研究计划 101832020CX115

详细信息
    作者简介:

    那景新(1957-),男,黑龙江哈尔滨人,吉林大学教授,从事车身结构轻量化设计

    通讯作者:

    庄蔚敏(1970-),女,上海人,吉林大学教授,工学博士

  • 中图分类号: U270.12

Review on strength and environmental durability of composite adhesive structures

Funds: 

National Natural Science Foundation of China 51775230

National Natural Science Foundation of China 51775227

National Natural Science Foundation of China 51375201

Interdisciplinary Research Fund for Doctoral Students of Jilin University 101832020DJX038

Graduate Innovation Research Program of Jilin University 101832020CX115

More Information
  • 摘要: 为深化对复合材料粘接结构环境耐久性的研究,从胶粘剂基础研究和面向工程的粘接结构应用研究两方面综述了国内外研究现状,探讨了粘接结构老化、疲劳及其耦合作用对强度的影响,总结了单因素和多因素耦合作用下的老化机理,根据基础研究归纳了粘接结构强度预测方法和疲劳寿命预测方法,并对未来研究重点及方向进行展望。分析结果表明:温度和湿度对粘接结构力学性能影响最为显著,多因素耦合作用下的老化更具破坏性,随温度产生的固化收缩、热膨胀系数的差异以及随湿度产生的水解和增塑作用均会使粘接剂老化,且载荷能够加速吸湿对粘接界面造成损伤,从而引发结构过早失效;老化与疲劳之间存在双向耦合作用,随时间变化的交变载荷不仅会影响粘接结构的疲劳寿命,同时还会加速粘接结构老化,而粘接结构在长期服役过程中的老化又会降低结构的疲劳性能;目前尚缺乏对湿热环境与交变载荷耦合作用下老化机理的深入研究,工程应用中的内聚力模型对延展性胶粘剂和厚胶层的预测效果欠佳,应进一步提高内聚力模型在复杂应力状态下的使用精度;损伤力学模型应考虑车辆实际服役工况并加入湿热耦合因素影响以提高使用精度;粘接结构疲劳寿命预测大多基于半经验模型,且对接头疲劳行为的预测局限于特定环境条件;随着粘接技术的进一步发展,对复杂应力状态下粘接结构服役性能的有效评估与建立准静态、疲劳和环境退化综合影响的渐进损伤模型将是未来研究的重点。

     

  • 图  1  粘接结构环境耐久性影响因素

    Figure  1.  Influencing factors of environmental durability of adhesive structure

    图  2  高温对不同粘接接头力学性能的影响

    Figure  2.  Effects of high temperature on mechanical properties of different adhesive joints

    图  3  复合材料树脂吸湿过程

    Figure  3.  Composite resin's moisture absorption process

    图  4  吸湿试验与Fick解析模型预测结果对比

    Figure  4.  Comparison of prediction results between moisture absorption test and Fick analytic model

    图  5  双搭接接头暴露不同时间后的力学性能变化

    Figure  5.  Changes in mechanical properties of double lap joints after exposure for different times

    图  6  环氧/CFRP粘接接头L-N数据点

    Figure  6.  L-N data points of epoxy /CFRP adhesive joints

    图  7  铝粘接接头的老化疲劳行为

    Figure  7.  Aging fatigue behaviors of aluminum adhesive joints

    图  8  不同疲劳循环次数下单搭接接头疲劳裂纹萌生显微监测

    Figure  8.  Microscopic monitoring of fatigue crack initiation in single lap joints under different fatigue cycles

    表  1  耦合作用下粘接结构老化典型研究

    Table  1.   Typical studies of aging of adhesive structures under coupling action

    研究对象 研究方法 主要研究内容 文献来源
    钢/CFRP双搭接接头 试验研究与理论解析 研究粘接结构在高温浸泡条件下的力学性能,理论推导出海水环境下
    接头强度和刚度退化模型
    [79]
    钢/CFRP双搭接接头 试验研究与化学分析 研究粘接结构在湿热及紫外线照射下性能退化机理 [80]
    单搭接接头和双层
    复合接头
    试验研究与数值仿真 研究疲劳寿命随湿热条件含水率的变化,考虑热应变和膨胀应变引起的
    残余应力对接头疲劳响应进行数值建模
    [65]
    金属层合板 试验研究 进一步研究湿热老化条件下,拉伸载荷作用对粘接结构静态强度和
    疲劳响应的影响
    [81]
    铝合金/CFRP对接
    接头
    试验研究、数值仿真
    与化学分析
    研究交变载荷对湿热老化粘接接头剩余强度的影响,定义环境退化因子,
    预测交变载荷作用下粘接结构剩余强度
    [82]
    铝合金/CFRP单搭接
    接头
    试验研究与化学分析 定量研究失效载荷与官能团吸光度之间的关系,实现粘接结构在湿热
    老化后剩余强度的快速预测
    [83]
    单搭接接头 试验研究与数值仿真 利用完全耦合的方法模拟接头退化过程,同时考虑含水率对应力分布的
    影响和应力状态对含水率扩散分析的影响
    [84]
    胶粘剂哑铃试件 试验研究 研究湿热条件下水分扩散对胶粘剂局部力学性能的影响,建立水分退化模型 [85]
    下载: 导出CSV
  • [1] 孙中雷, 张国凡. 复合材料胶接接头强度设计研究[J]. 计算机仿真, 2017, 34(3): 46-50. doi: 10.3969/j.issn.1006-9348.2017.03.011

    SUN Zhong-lei, ZHANG Guo-fan. Strength design of adhesively bonded composite double-lap joints[J]. Computer Simulation, 2017, 34(3): 46-50. (in Chinese) doi: 10.3969/j.issn.1006-9348.2017.03.011
    [2] 纪俊栋. 车身胶粘结构断裂失效准则改进研究[D]. 长春: 吉林大学, 2019.

    JI Jun-dong. Research on improvement of fracture failure criterion of body adhesion[D]. Changchun: Jilin University, 2019. (in Chinese)
    [3] BANEA M D, DA SILVA L F M. Mechanical characterization of flexible adhesives[J]. The Journal of Adhesion, 2009, 85(4/5): 261-285. doi: 10.1080/00218460902881808
    [4] BANEA M D, DA SILVA L F M. Adhesively bonded joints in composite materials: an overview[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2009, 223(1): 1-18. doi: 10.1243/14644207JMDA219
    [5] GALVEZ P, ABENOJAR J, MARTINEZ M A. Durability of steel-CFRP structural adhesive joints with polyurethane adhesives[J]. Composites Part B: Engineering, 2019, 165(11): 1-9. https://www.sciencedirect.com/science/article/pii/S1359836818329159
    [6] COSTA M, VIANA G, DA SILVA L F M, et al. Effect of humidity on the mechanical properties of adhesively bonded aluminium joints[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2018, 232(9): 733-742. doi: 10.1177/1464420716645263
    [7] AVENDAÑO R, CARBAS R J C, MARQUES E A S, et al. Effect of temperature and strain rate on single lap joints with dissimilar lightweight adherends bonded with an acrylic adhesive[J]. Composite Structures, 2016, 152: 34-44. doi: 10.1016/j.compstruct.2016.05.034
    [8] POPINEAU S, RONDEAU-MOURO C, SULPICE-GAILLET C, et al. Free/bound water absorption in an epoxy adhesive[J]. Polymer, 2005, 46(24): 10733-10740. doi: 10.1016/j.polymer.2005.09.008
    [9] BUCH X, SHANAHAN M E R. Influence of the gaseous environment on the thermal degradation of a structural epoxy adhesive[J]. Journal of Applied Polymer Science, 2000, 76(7): 987-992. doi: 10.1002/(SICI)1097-4628(20000516)76:7<987::AID-APP1>3.0.CO;2-1
    [10] ANDERSON B J. Thermal stability of high temperature epoxy adhesives by thermogravimetric and adhesive strength measurements[J]. Polymer Degradation and Stability, 2011, 96(10): 1874-1881. doi: 10.1016/j.polymdegradstab.2011.07.010
    [11] HESHMATI M, HAGHANI R, AL-EMRANI M. Durability of bonded FRP-to-steel joints: effects of moisture, de-icing salt solution, temperature and FRP type[J]. Composites Part B: Engineering, 2017, 119: 153-167. doi: 10.1016/j.compositesb.2017.03.049
    [12] MAGGANA C, PISSIS P. Water sorption and diffusion studies in an epoxy resin system[J]. Journal of Polymer Science Part B: Polymer Physics, 1999, 37(11): 1165-1182. doi: 10.1002/(SICI)1099-0488(19990601)37:11<1165::AID-POLB11>3.0.CO;2-E
    [13] NGUYEN T C, BAI Y, ZHAO X L, et al. Effects of ultraviolet radiation and associated elevated temperature on mechanical performance of steel/CFRP double strap joints[J]. Composite Structures, 2012, 94(12): 3563-3573. doi: 10.1016/j.compstruct.2012.05.036
    [14] 黄亚江, 叶林, 廖霞, 等. 复杂条件下高分子材料老化规律、寿命预测与防治研究新进展[J]. 高分子通报, 2017(10): 52-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GFZT201710007.htm

    HUANG Ya-jiang, YE Lin, LIAO Xia, et al. The degradation behavior, service lifetime prediction and stabilization strategy of polymeric materials under complex condition[J]. Chinese Polymer Bulletin, 2017(10): 52-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GFZT201710007.htm
    [15] BUDHE S, BANEA M D, DE BARROS S, et al. An updated review of adhesively bonded joints in composite materials[J]. International Journal of Adhesion and Adhesives, 2017, 72: 30-42. doi: 10.1016/j.ijadhadh.2016.10.010
    [16] DEMUTS E, SHYPRYKEVICH P. Accelerated environmental testing of composites[J]. Composites, 1984, 15(1): 25-31. doi: 10.1016/0010-4361(84)90957-1
    [17] HE Xiao-cong. A review of finite element analysis of adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2011, 31(4): 248-264. doi: 10.1016/j.ijadhadh.2011.01.006
    [18] PETHRICK R A. Design and ageing of adhesives for structural adhesive bonding—a review[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2015, 229(5): 349-379. doi: 10.1177/1464420714522981
    [19] 慕文龙, 那景新, 秦国锋, 等. 交变载荷对CFRP复合材料-铝合金粘接接头剩余强度的影响[J]. 复合材料学报, 2019, 36(5): 1124-1131. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201905007.htm

    MU Wen-long, NA Jing-xin, QIN Guo-feng, et al. Effect of alternating load on residual strength of adhesively bonded CFRP composite-aluminum alloy joints[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1124-1131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201905007.htm
    [20] 张军, 王增威, 杨军, 等. EP胶粘接剂-不锈钢对接粘接结构的疲劳试验与理论研究[J]. 中国胶粘接剂, 2015, 24(10): 1-7. http://www.cnki.com.cn/Article/CJFDTotal-GXLJ201510018.htm

    ZHANG Jun, WANG Zeng-wei, YANG Jun, et al. Fatigue experiment and theoretical investigation of epoxy resin adhesive-stainless steel butt joint bonding structure[J]. China Adhesives, 2015, 24(10): 1-7. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GXLJ201510018.htm
    [21] 周森, 何晓聪, 王玉奇, 等. 5052铝合金胶接接头静强度及疲劳性能研究[J]. 材料导报, 2013, 27(18): 104-107. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201318029.htm

    ZHOU Sen, HE Xiao-cong, WANG Yu-qi, et al. Research on static strength and fatigue property of bonded joint in 5052 aluminum alloy[J]. Materials Review, 2013, 27(18): 104-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201318029.htm
    [22] 常保华, 史耀武, 卢良清. 胶焊搭接接头的应力分布和疲劳行为研究[J]. 机械工程学报, 2000, 36(2): 106-110. doi: 10.3321/j.issn:0577-6686.2000.02.027

    CHANG Bao-hua, SHI Yao-wu, LU Liang-qing, et al. Studies on stress distribution and fatigue behavior of weldbonded lap shear joints[J]. Chinese Journal of Mechanical Engineering, 2000, 36(2): 106-110. (in Chinese) doi: 10.3321/j.issn:0577-6686.2000.02.027
    [23] 郭岗, 王佳茜, 李沙. 厚复合材料层压板胶粘接头疲劳性能及局部应力研究[J]. 建筑机械, 2015(3): 67-71, 74. doi: 10.3969/j.issn.1001-1366.2015.03.017

    GUO Gang, WANG Jia-qian, LI Sha, et al. Local stress analysis of fatigue performance of adhesively bonded thick composite laminates[J]. Construction Machinery, 2015(3): 67-71, 74. (in Chinese) doi: 10.3969/j.issn.1001-1366.2015.03.017
    [24] ALTAN G M, TOPÇU Η Ç. The effects of the butterfly joints on failure loads and fatigue performance of composite structures[J]. Ence and Engineering of Composite Materials, 2010, 17(3): 199-212. doi: 10.1515/SECM.2010.17.3.199
    [25] KHALILI S M R, SHOKUHFAR A, HOSEINI S D, et al. Experimental study of the influence of adhesive reinforcement in lap joints for composite structures subjected to mechanical loads[J]. International Journal of Adhesion and Adhesives, 2008, 28(8): 436-444. doi: 10.1016/j.ijadhadh.2008.04.009
    [26] HESHMATI M, HAGHANI R, AL-EMRANI M. Environmental durability of adhesively bonded FRP/steel joints in civil engineering applications: state of the art[J]. Composites Part B: Engineering, 2015, 81: 259-275. doi: 10.1016/j.compositesb.2015.07.014
    [27] ISHⅡ K, IMANAKA M, NAKAYAMA H, et al. Fatigue failure criterion of adhesively bonded CFRP/metal joints under multiaxial stress conditions[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(4): 415-422. doi: 10.1016/S1359-835X(97)00096-1
    [28] YANG Zhao-jun, ZHANG Kai-fu, MA Yan-an, et al. Orthogonal test research on the effect of curing technology on the fatigue life of adhesive bonding of CFRP and aluminum alloy[J]. Advanced Materials Research, 2011, 181-182: 534-539. doi: 10.4028/www.scientific.net/AMR.181-182.534
    [29] MARQUES E A S, DA SILVA L F M, BANEA M D, et al. Adhesive joints for low- and high-temperature use: an overview[J]. The Journal of Adhesion, 2015, 91(7): 556-585. doi: 10.1080/00218464.2014.943395
    [30] BANEA M D, DA SILVA L F M. The effect of temperature on the mechanical properties of adhesives for the automotive industry[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2010, 224(2): 51-62. doi: 10.1243/14644207JMDA283
    [31] NGUYEN T C, BAI Yu, ZHAO Xiao-ling, et al. Mechanical characterization of steel/CFRP double strap joints at elevated temperatures[J]. Composite Structures, 2011, 93(6): 1604-1612. doi: 10.1016/j.compstruct.2011.01.010
    [32] AL-SHAWAF A K. Characterization of bonding behavior between wet lay-up carbon fibre reinforced polymer and steel plates in double-strap joints under extreme environmental temperatures[J]. EGU General Assembly, 2017, DOI:https://doi.org/ 10.4225/03/587d4a58366ad.
    [33] AL-SHAWAF A, AL-MAHAIDI R, ZHAO X L. Effect of elevated temperature on bond behaviour of high modulus CFRP/steel double-strap joints[J]. Australian Journal of Structural Engineering, 2009, 10(1): 63-74. doi: 10.1080/13287982.2009.11465033
    [34] ZHANG Y, VASSILOPOULOS A P, KELLER T. Effects of low and high temperatures on tensile behavior of adhesively-bonded GFRP joints[J]. Composite Structures, 2010, 92(7): 1631-1639. doi: 10.1016/j.compstruct.2009.11.028
    [35] GORUGANTHU S, ELWELL J, RAMASETTY A, et al. Characterization and modeling of the effect of environmental degradation on interlaminar shear strength of carbon/epoxy composites[J]. Polymers and Polymer Composites, 2008, 16(3): 165-179. doi: 10.1177/096739110801600301
    [36] CAO Sheng-hu, WU Zhi-shen, WANG Xin. Tensile properties of CFRP and hybrid FRP composites at elevated temperatures[J]. Journal of Composite Materials, 2009, 43(4): 315-330. doi: 10.1177/0021998308099224
    [37] NARDONE F, DI LUDOVICO M, DE CASO Y BASALO F J, et al. Tensile behavior of epoxy based FRP composites under extreme service conditions[J]. Composites Part B: Engineering, 2012, 43(3): 1468-1474. doi: 10.1016/j.compositesb.2011.08.042
    [38] WANG K, YOUNG B, SMITH S T. Mechanical properties of pultruded carbon fibre-reinforced polymer (CFRP) plates at elevated temperatures[J]. Engineering Structures, 2011, 33(7): 2154-2161. doi: 10.1016/j.engstruct.2011.03.006
    [39] 范以撒. 温度湿度对车用聚氨酯粘接剂静态强度的影响研究[D]. 长春: 吉林大学, 2018.

    FAN Yi-sa. Research on the effect of temperature and humidity on static strength of automotive polyurethane adhesive[D]. Changchun: Jilin University, 2018. (in Chinese)
    [40] 秦国锋. 温湿老化对车用CFRP/铝合金粘接接头静态失效的影响[D]. 长春: 吉林大学, 2018.

    QIN Guo-feng. Effects of temperature and humidity aging on the static failure of adhesively bonded CFRP/aluminium alloy joints for automotive applications[D]. Changchun: Jilin University, 2018. (in Chinese)
    [41] 游敏, 郑小玲, 郑勇. 金属胶接接头的内应力及其消除[J]. 中国胶粘剂, 1996, 5(3): 26-28, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ199603009.htm

    YOU Min, ZHENG Xiao-ling, ZHENG Yong, et al. Analysis on the internal stress in the metal-to-metal adhesion joints[J]. China Adhesives, 1996, 5(3): 26-28, 42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ199603009.htm
    [42] NA Jing-xin, LIU Yu, WANG Yan-wu, et al. Effect of temperature on the joints strength of an automotive polyurethane adhesive[J]. The Journal of Adhesion, 2016, 92(1): 52-64. doi: 10.1080/00218464.2014.996634
    [43] NA Jing-xin, MU Wen-long, QIN Guo-feng, et al. Effect of temperature on the mechanical properties of adhesively bonded basalt FRP-aluminum alloy joints in the automotive industry[J]. International Journal of Adhesion and Adhesives, 2018, 85: 138-148. doi: 10.1016/j.ijadhadh.2018.05.027
    [44] YU J H, GUO S, DILLARD D A. Bimaterial curvature measurements for the CTE of adhesives: optimization, modeling, and stability[J]. Journal of Adhesion Science and Technology, 2003, 17(2): 149-164. doi: 10.1163/156856103762301970
    [45] 郑小玲, 魏晓红, 游敏, 等. 单搭接接头胶层中的温度应变研究[J]. 三峡大学学报(自然科学版), 2003, 25(2): 111-113. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200302005.htm

    ZHENG Xiao-ling, WEI Xiao-hong, YOU Min, et al. Effect of environmental temperature on strain in adhesive layer of single lap joint[J]. Journal of China Three Gorges University(Natural Sciences), 2003, 25(2): 111-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200302005.htm
    [46] ZHANG A-ying, LU Hai-bao, ZHANG Dong-xing. Synergistic effect of cyclic mechanical loading and moisture absorption on the bending fatigue performance of carbon/epoxy composites[J]. Journal of Materials Science, 2014, 49(1): 314-320. doi: 10.1007/s10853-013-7707-9
    [47] PILLAY S, VAIDYA U K, JANOWSKI G M. Effects of moisture and UV exposure on liquid molded carbon fabric reinforced nylon 6 composite laminates[J]. Composites Science and Technology, 2009, 69(6): 839-846. doi: 10.1016/j.compscitech.2008.03.021
    [48] ZHENG Q, MORGAN R J. Synergistic thermal-moisture damage mechanisms of epoxies and their carbon fiber composites[J]. Journal of Composite Materials, 1993, 27(15): 1465-1478. doi: 10.1177/002199839302701503
    [49] MOY P, KARASZ F E. Epoxy-water interactions[J]. Polymer Engineering and Science, 1980, 20(4): 315-319. doi: 10.1002/pen.760200417
    [50] SUGIMAN S, CROCOMBE A D, ASCHROFT I A. Experimental and numerical investigation of the static response of environmentally aged adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2013, 40: 224-237. doi: 10.1016/j.ijadhadh.2012.08.007
    [51] XIAO G Z, SHANAHAN M E R. Irreversible effects of hygrothermal aging on DGEBA/DDA epoxy resin[J]. Journal of Applied Polymer Science, 1998, 69(2): 363-369. doi: 10.1002/(SICI)1097-4628(19980711)69:2<363::AID-APP18>3.0.CO;2-X
    [52] ALMUDAIHESH F, HOLFORD K, PULLIN R, et al. The influence of water absorption on unidirectional and 2D woven CFRP composites and their mechanical performance[J]. Composites Part B: Engineering, 2020, 182: 107626. doi: 10.1016/j.compositesb.2019.107626
    [53] VANLANDINGHAM M R, EDULJEE R F, GILLESPIE J W. Moisture diffusion in epoxy systems[J]. Journal of Applied Polymer Science, 1999, 71(5): 787-798. doi: 10.1002/(SICI)1097-4628(19990131)71:5<787::AID-APP12>3.0.CO;2-A
    [54] MUBASHAR A, ASHCROFT I A. Comparison of cohesive zone elements and smoothed particle hydrodynamics for failure prediction of single lap adhesive joints[J]. The Journal of Adhesion, 2017, 93(6): 444-460. doi: 10.1080/00218464.2015.1081819
    [55] CARTER H G, KIBLER K G. Langmuir-type model for anomalous moisture diffusion in composite resins[J]. Journal of Composite Materials, 1978, 12(2): 118-131. doi: 10.1177/002199837801200201
    [56] ALMEIDA J H S, SOUZA S D B, BOTELHO E C, et al. Carbon fiber-reinforced epoxy filament-wound composite laminates exposed to hygrothermal conditioning[J]. Journal of Materials Science, 2016, 51(9): 4697-4708. doi: 10.1007/s10853-016-9787-9
    [57] SHOKRIEH M M, BAYAT A. Effects of ultraviolet radiation on mechanical properties of glass/polyester composites[J]. Journal of Composite Materials, 2007, 41(20): 2443-2455. doi: 10.1177/0021998307075441
    [58] LARSSON F. The effect of ultraviolet light on mechanical properties of kevlar 49 composites[J]. Journal of Reinforced Plastics and Composites, 1986, 5(1): 19-22. doi: 10.1177/073168448600500103
    [59] CHIN J W. Durability of composites exposed to ultraviolet radiation[J]. Durability of Composites for Civil Structural Applications, 2007(1): 80-97. https://www.sciencedirect.com/science/article/pii/B9781845690359500050
    [60] NGUYEN T C, BAI Yu, ZHAO Xiao-ling, et al. Curing effects on steel/CFRP double strap joints under combined mechanical load, temperature and humidity[J]. Construction and Building Materials, 2013, 40(3): 899-907. https://www.sciencedirect.com/science/article/pii/S0950061812008628
    [61] SZÉPE F. Strength of adhesive-bonded lap joints with respect to change of temperature and fatigue[J]. Experimental Mechanics, 1966, 6(5): 280-286. doi: 10.1007/BF02327312
    [62] HARRIS J A, FAY P A. Fatigue life evaluation of structural adhesives for automative applications[J]. International Journal of Adhesion and Adhesives, 1992, 12(1): 9-18. doi: 10.1016/0143-7496(92)90003-E
    [63] ASHCROFT I A, HUGHES D J, SHAW S J, et al. Effect of temperature on the quasi-static strength and fatigue resistance of bonded composite double lap joints[J]. The Journal of Adhesion, 2001, 75(1): 61-88. doi: 10.1080/00218460108029594
    [64] WAHAB M M A, ASHCROFT I A, CROCOMBE A D, et al. The effect of environment on the fatigue of bonded composite joints, Part 2: fatigue threshold prediction[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(1): 59-69. doi: 10.1016/S1359-835X(00)00132-9
    [65] SUGIMAN S, CROCOMBE A D, ASCHROFT I A. The fatigue response of environmentally degraded adhesively bonded aluminium structures[J]. International Journal of Adhesion and Adhesives, 2013, 41(1): 80-91. https://www.sciencedirect.com/science/article/pii/S0143749612001522
    [66] DATLA N V, PAPINI M, ULICNY J, et al. The effects of test temperature and humidity on the mixed-mode fatigue behavior of a toughened adhesive aluminum joint[J]. Engineering Fracture Mechanics, 2011, 78(6): 1125-1139. doi: 10.1016/j.engfracmech.2011.01.028
    [67] PATIL O R, AMELI A, DATLA N V. Predicting environmental degradation of adhesive joints using a cohesive zone finite element model based on accelerated fracture tests[J]. International Journal of Adhesion and Adhesives, 2017, 76: 54-60. doi: 10.1016/j.ijadhadh.2017.02.007
    [68] LILJEDAHL C D M, CROCOMBE A D, WAHAB M A, et al. The effect of residual strains on the progressive damage modelling of environmentally degraded adhesive joints[J]. Journal of Adhesion Science and Technology, 2005, 19(7): 525-547. doi: 10.1163/1568561054352513
    [69] BAI Y, KELLER T. Pultruded GFRP tubes with liquid-cooling system under combined temperature and compressive loading[J]. Composite Structures, 2009, 90(2): 115-121. doi: 10.1016/j.compstruct.2009.02.009
    [70] BAI Y, KELLER T. Effects of thermal loading history on structural adhesive modulus across glass transition[J]. Construction and Building Materials, 2011, 25(4): 2162-2168. doi: 10.1016/j.conbuildmat.2010.11.012
    [71] NGUYEN T C, BAI Y, AL-MAHAIDI R, et al. Time-dependent behaviour of steel/CFRP double strap joints subjected to combined thermal and mechanical loading[J]. Composite Structures, 2012, 94(5): 1826-1833. doi: 10.1016/j.compstruct.2012.01.007
    [72] 韩啸. 胶接接头湿热环境耐久性试验与建模研究[D]. 大连: 大连理工大学, 2014.

    HAN Xiao. Experimental and modelling study on the durability performance of adhesively bonded joint in hygro-thermal environment[D]. Dalian: Dalian University of Technology, 2014. (in Chinese)
    [73] 张晓云, 曹东, 陆峰, 等. T700-5224复合材料在湿热环境和化学介质中的老化行为[J]. 材料工程, 2016, 44(4): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201604015.htm

    ZHANG Xiao-yun, CAO Dong, LU Feng, et al. Aging behavior of T700/5224 composite in hygrothermal environment and chemical media[J]. Journal of Materials Engineering, 2016, 44(4): 82-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201604015.htm
    [74] SUN Pei, ZHAO Yan, LUO Yun-feng, et al. Effect of temperature and cyclic hygrothermal aging on the interlaminar shear strength of carbon fiber/bismaleimide (BMI) composite[J]. Materials and Design, 2011, 32(8/9): 4341-4347. https://www.sciencedirect.com/science/article/pii/S0261306911002627
    [75] 那景新, 慕文龙, 范以撒, 等. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201806004.htm

    NA Jing-xin, MU Wen-long, FAN Yi-sa, et al. Effect of hygrothermal aging on steel-aluminum adhesive joints for automotive applications[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1653-1660. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201806004.htm
    [76] COSTA I, BARROS J. Tensile creep of a structural epoxy adhesive: experimental and analytical characterization[J]. International Journal of Adhesion and Adhesives, 2015, 59: 115-124. doi: 10.1016/j.ijadhadh.2015.02.006
    [77] AGARWAL A, FOSTER S J, HAMED E. Wet thermo-mechanical behavior of steel-CFRP joints—an experimental study[J]. Composites Part B: Engineering, 2015, 83: 284-296. doi: 10.1016/j.compositesb.2015.08.025
    [78] JURF R A, VINSON J R. Effect of moisture on the static and viscoelastic shear properties of epoxy adhesives[J]. Journal of Materials Science, 1985, 20(8): 2979-2989. doi: 10.1007/BF00553063
    [79] NGUYEN T C, BAI Y, ZHAO X L, et al. Durability of steel/CFRP double strap joints exposed to sea water, cyclic temperature and humidity[J]. Composite Structures, 2012, 94(5): 1834-1845. doi: 10.1016/j.compstruct.2012.01.004
    [80] BAI Y, NGUYEN T C, ZHAO X L, et al. Environment-assisted degradation of the bond between steel and carbon-fiber-reinforced polymer[J]. Journal of Materials in Civil Engineering, 2014, 26(9): 04014054. doi: 10.1061/(ASCE)MT.1943-5533.0000951
    [81] SUGIMAN S, CROCOMBE A D. The static and fatigue responses of aged metal laminate doublers joints under tension loading[J]. Journal of Adhesion Science and Technology, 2016, 30(3): 313-327. doi: 10.1080/01694243.2015.1104079
    [82] MU Wen-long, QIN Guo-feng, NA Jing-xin, et al. Effect of alternating load on the residual strength of environmentally aged adhesively bonded CFRP-aluminum alloy joints[J]. Composites Part B: Engineering, 2019, 168: 87-97. doi: 10.1016/j.compositesb.2018.12.070
    [83] MU Wen-long, NA Jing-xin, WANG Guang-bin, et al. Rapid prediction method of failure load for hygrothermally aged CFRP-aluminum alloy single lap joints[J]. Composite Structures, 2020, 252: 112603. doi: 10.1016/j.compstruct.2020.112603
    [84] HAN X, CROCOMBE A D, ANWAR S N R, et al. The strength prediction of adhesive single lap joints exposed to long term loading in a hostile environment[J]. International Journal of Adhesion and Adhesives, 2014, 55: 1-11. doi: 10.1016/j.ijadhadh.2014.06.013
    [85] HAN X, PICKERING E, BO A, et al. Characterisation on the hygrothermal degradation in the mechanical property of structural adhesive: a novel meso-scale approach[J]. Composites Part B: Engineering, 2020, 182(9): 107609. https://eprints.qut.edu.au/198125/
    [86] ICARDI U, SOLA F. Analysis of bonded joints with laminated adherends by a variable kinematics layerwise model[J]. International Journal of Adhesion and Adhesives, 2014, 50: 244-254. doi: 10.1016/j.ijadhadh.2014.02.003
    [87] SELAHI E, TAHANI M, YOUSEFSANI S A. Analytical solution of stress field in adhesively bonded composite single-lap joints under mechanical loadings[J]. International Journal of Engineering, 2014, 27(3): 475-486. https://www.ije.ir/article_72276.html
    [88] WANG Jia-lai, ZHANG Chao. Three-parameter, elastic foundation model for analysis of adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2009, 29(5): 495-502. doi: 10.1016/j.ijadhadh.2008.10.002
    [89] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. doi: 10.1016/0022-5096(60)90013-2
    [90] MI Y, CRISFIELD M A, DAVIES G A O, et al. Progressive delamination using interface elements[J]. Journal of Composite Materials, 1998, 32(14): 1246-1272. doi: 10.1177/002199839803201401
    [91] TVERGAARD V. Model studies of fibre breakage and debonding in a metal reinforced by short fibres[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(8): 1309-1326. doi: 10.1016/0022-5096(93)90081-P
    [92] TVERGAARD V, HUTCHINSON J W. Effect of strain-dependent cohesive zone model on predictions of crack growth resistance[J]. International Journal of Solids and Structures, 1996, 33(20/21/22): 3297-3308. https://www.sciencedirect.com/science/article/pii/0020768395002618
    [93] NEEDLEMAN A, XU X P. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397-1434. doi: 10.1016/0022-5096(94)90003-5
    [94] 张军, 贾宏. 内聚力模型的形状对胶接结构断裂过程的影响[J]. 力学学报, 2016, 48(5): 1088-1095. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201605009.htm

    ZHANG Jun, JIA Hong. Influence of cohesive zone models shape on adhesively bonded joints[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1088-1095. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201605009.htm
    [95] CAMPILHO R D S G, BANEA M D, NETO J A B P, et al. Modelling of single-lap joints using cohesive zone models: effect of the cohesive parameters on the output of the simulations[J]. The Journal of Adhesion, 2012, 88(4/5/6): 513-533. doi: 10.1080/00218464.2012.660834
    [96] LEE K Y, KONG B S. Theoretical and experimental studies for the failure criterion of adhesively bonded joints[J]. Journal of Adhesion Science and Technology, 2000, 14(6): 817-832. doi: 10.1163/15685610051066730
    [97] LI S, THOULESS M D, WAAS A M, et al. Mixed-mode cohesive-zone models for fracture of an adhesively bonded polymer-matrix composite[J]. Engineering Fracture Mechanics, 2006, 73(1): 64-78. doi: 10.1016/j.engfracmech.2005.07.004
    [98] STEARNS R S, DULING I N, JOHNSON R H. The relationship of the glass transition temperature to the viscosity-temperature characteristics of lubricants[J]. I and EC Product Research and Development, 1966, 5(4): 306-313.
    [99] KROPKA J M, ADOLF D B, SPANGLER S, et al. Mechanisms of degradation in adhesive joint strength: glassy polymer thermoset bond in a humid environment[J]. International Journal of Adhesion and Adhesives, 2015, 63: 14-25. doi: 10.1016/j.ijadhadh.2015.07.014
    [100] JOJIBABU P, RAM G D J, DESHPANDE A P, et al. Effect of carbon nano-filler addition on the degradation of epoxy adhesive joints subjected to hygrothermal aging[J]. Polymer Degradation and Stability, 2017, 140: 84-94. doi: 10.1016/j.polymdegradstab.2017.04.017
    [101] NAM J D, SEFERIS J C. Generalized composite degradation kinetics for polymeric systems under isothermal and nonisothermal conditions[J]. Journal of Polymer Science Part B: Polymer Physics, 1992, 30(5): 455-463. doi: 10.1002/polb.1992.090300505
    [102] MU Wen-long, NA Jing-xin, WANG Guang-bin, et al. Rapid prediction method of failure load for hygrothermally aged CFRP-aluminum alloy single lap joints[J]. Composite Structures, 2020, 252: 112603. doi: 10.1016/j.compstruct.2020.112603
    [103] PEKBEY Y. Numerical elastoplastic analysis of the shear stress distribution in the adhesive layer for single-lap joints[J]. Science and Engineering of Composite Materials, 2014, 21(3): 389-400. https://www.researchgate.net/publication/272554348_Numerical_elastoplastic_analysis_of_the_shear_stress_distribution_in_the_adhesive_layer_for_single-lap_joints
    [104] REIS P N B, FERREIRA J A M, ANTUNES F. Effect of adherend's rigidity on the shear strength of single lap adhesive joints[J]. International Journal of Adhesion and Adhesives, 2011, 31(4): 193-201. doi: 10.1016/j.ijadhadh.2010.12.003
    [105] PINTO A M G, MAGALHÃES A G, CAMPILHO R D S G, et al. Single-lap joints of similar and dissimilar adherends bonded with an acrylic adhesive[J]. The Journal of Adhesion, 2009, 85(6): 351-376. doi: 10.1080/00218460902880313
    [106] QIN Guo-feng, NA Jing-xin, TAN Wei, et al. Failure prediction of adhesively bonded CFRP-aluminum alloy joints using cohesive zone model with consideration of temperature effect[J]. The Journal of Adhesion, 2019, 95(8): 723-746. doi: 10.1080/00218464.2018.1440212
    [107] NA J X, WANG G B, MU W L, et al. Study on the fracture failure criteria for bonded structures considering temperature sensitivity[J]. Journal of Adhesion Science and Technology, 2021, 35(3): 269-295. doi: 10.1080/01694243.2020.1800973
    [108] JEN Y M. Fatigue life evaluation of adhesively bonded scarf joints[J]. International Journal of Fatigue, 2012, 36(1): 30-39. doi: 10.1016/j.ijfatigue.2011.08.018
    [109] KUMAR S, PANDEY P. Cyclic-fatigue performance of adhesively bonded lap joint[J]. Failure Mechanics Letters (FML), 2006, 1(1): 541-546.
    [110] GOMATAM R R, SANCAKTAR E. The effects of stress state, loading frequency and cyclic waveforms on the fatigue behavior of silver-filled electronically-conductive adhesive joints[J]. Journal of Adhesion Science and Technology, 2006, 20(1): 53-68. doi: 10.1163/156856106775212378
    [111] MARIAM M, AFENDI M, MAJID M S A, et al. Water ageing effect on the strength of adhesively bonded joints[J]. AIP Conference Proceedings, 2018, 2030(1): 735-743. https://www.researchgate.net/profile/M-Mariam/publication/328893297_Water_ageing_effect_on_the_strength_of_adhesively_bonded_joints/links/5c15089792851c39ebef29bb/Water-ageing-effect-on-the-strength-of-adhesively-bonded-joints.pdf
    [112] SHENOY V, ASHCROFT I A, CRITCHLOW G W, et al. Unified methodology for the prediction of the fatigue behaviour of adhesively bonded joints[J]. International Journal of Fatigue, 2010, 32(8): 1278-1288. doi: 10.1016/j.ijfatigue.2010.01.013
    [113] 何春林, 龚成中, 邢静忠. 复合材料疲劳理论研究进展[J]. 甘肃科技, 2006, 22(3): 140-143. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKJ200603055.htm

    HE Chun-lin, GONG Cheng-zhong, XING Jing-zhong, et al. Review on fatigue theory of composite materials[J]. Gansu Science and Technology, 2006, 22(3): 140-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSKJ200603055.htm
    [114] KINLOCH A J, OSIYEMI S O, OSLYEML S. Predicting the fatigue life of adhesively-bonded joints[J]. The Journal of Adhesion, 1993, 43(1/2): 79-90. https://www.sciencedirect.com/science/article/pii/B9780857098061000161
    [115] KHORAMISHAD H, CROCOMBE A D, KATNAM K B, et al. Predicting fatigue damage in adhesively bonded joints using a cohesive zone model[J]. International Journal of Fatigue, 2010, 32(7): 1146-1158. doi: 10.1016/j.ijfatigue.2009.12.013
    [116] GRANER SOLANA A, CROCOMBE A D, ASHCROFT I A. Fatigue life and backface strain predictions in adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2010, 30(1): 36-42. doi: 10.1016/j.ijadhadh.2009.08.001
    [117] SHENOY V, ASHCROFT I A, CRITCHLOW G W, et al. An investigation into the crack initiation and propagation behaviour of bonded single-lap joints using backface strain[J]. International Journal of Adhesion and Adhesives, 2009, 29(4): 361-371. doi: 10.1016/j.ijadhadh.2008.07.008
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2290
  • HTML全文浏览量:  477
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-08
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回