留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速铁路辙叉区钢轨打磨廓形设计方法

林凤涛 吴涛 杨洋 庞华飞 邹亮 翁涛涛 王松涛 邓卓鑫

林凤涛, 吴涛, 杨洋, 庞华飞, 邹亮, 翁涛涛, 王松涛, 邓卓鑫. 高速铁路辙叉区钢轨打磨廓形设计方法[J]. 交通运输工程学报, 2021, 21(6): 124-135. doi: 10.19818/j.cnki.1671-1637.2021.06.009
引用本文: 林凤涛, 吴涛, 杨洋, 庞华飞, 邹亮, 翁涛涛, 王松涛, 邓卓鑫. 高速铁路辙叉区钢轨打磨廓形设计方法[J]. 交通运输工程学报, 2021, 21(6): 124-135. doi: 10.19818/j.cnki.1671-1637.2021.06.009
LIN Feng-tao, WU Tao, YANG Yang, PANG Hua-fei, ZOU Liang, WENG Tao-tao, WANG Song-tao, DENG Zhuo-xin. Design method of rail grinding profile in frog area of high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 124-135. doi: 10.19818/j.cnki.1671-1637.2021.06.009
Citation: LIN Feng-tao, WU Tao, YANG Yang, PANG Hua-fei, ZOU Liang, WENG Tao-tao, WANG Song-tao, DENG Zhuo-xin. Design method of rail grinding profile in frog area of high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 124-135. doi: 10.19818/j.cnki.1671-1637.2021.06.009

高速铁路辙叉区钢轨打磨廓形设计方法

doi: 10.19818/j.cnki.1671-1637.2021.06.009
基金项目: 

国家自然科学基金项目 52065021

江西省科技厅重点研发计划 20212BBE53024

详细信息
    作者简介:

    林凤涛(1977-),男,内蒙古赤峰人,华东交通大学教授,工学博士,从事轮轨关系研究

  • 中图分类号: U213.62

Design method of rail grinding profile in frog area of high-speed railway

Funds: 

National Natural Science Foundation of China 52065021

Key Research and Development Program of Science and Technology Department of Jiangxi Province 20212BBE53024

More Information
  • 摘要: 以心轨顶宽20、35、50 mm处的辙叉区钢轨关键截面作为研究对象,基于NURBS曲线理论建立辙叉区钢轨廓形重构方法;以关键截面钢轨廓形上若干型值点为设计变量,以打磨材料去除量的减少和脱轨系数的降低为目标,以钢轨廓形几何特征和降低钢轨滚动接触疲劳为约束条件,设计出18号道岔辙叉区钢轨经济性打磨廓形;建立了轮轨接触有限元模型和车辆-轨道耦合动力学模型,进行了轮轨接触应力与动力学指标计算。分析结果表明:优化的打磨廓形接触点分布均匀,具有良好的轮轨接触几何特性;钢轨打磨材料去除量在2号截面处降低了17.2%;各截面Mises应力分别降低了8.7%、8.3%和11.5%,轮轨接触应力降幅分别为12.9%、15.8%和18.0%;列车逆侧向过岔时,轮轨横向力与车体横向振动加速度分别降低了10.3%和15.6%,脱轨系数与轮重减载率分别降低了8.1%和10.6%,疲劳因子降低了12.2%。可见,优化廓形在保证列车运行安全性的同时,提升了列车运行的平稳性以及辙叉区钢轨的使用寿命。

     

  • 图  1  辙叉区钢轨关键截面廓形

    Figure  1.  Profiles of rail key sections in frog area

    图  2  拟合廓形与标准廓形曲线对比

    Figure  2.  Comparison between fitting profile and standard profile curves

    图  3  辙叉区钢轨优化廓形

    Figure  3.  Optimized profiles of rail in frog area

    图  4  打磨材料去除量对比

    Figure  4.  Comparison of grinding material removal amounts

    图  5  截面1的标准廓形与优化廓形

    Figure  5.  Standard and optimized profiles of section 1

    图  6  截面2的标准廓形与优化廓形

    Figure  6.  Standard and optimized profiles of section 2

    图  7  截面3的标准廓形与优化廓形

    Figure  7.  Standard and optimized profiles of section 3

    图  8  辙叉区轮轨接触有限元模型

    Figure  8.  Finite element model of wheel-rail contact in frog area

    图  9  截面1的接触应力

    Figure  9.  Contact stresses of section 1

    图  10  截面2的接触应力

    Figure  10.  Contact stresses of section 2

    图  11  截面3的接触应力

    Figure  11.  Contact stresses of section 3

    图  12  优化前后轮轨接触应力对比

    Figure  12.  Comparison of wheel-rail contact stresses between optimized and standard profiles

    图  13  列车侧逆向过岔动力学响应

    Figure  13.  Vehicle dynamics responses when train reversely passing turnout branch

    图  14  优化前后的滚动接触疲劳因子

    Figure  14.  Rolling contact fatigue indices of optimized and standard profiles

    表  1  拟合廓形与标准廓形的相关系数

    Table  1.   Correlation coefficients between fitting profile and standard profile

    情况 型值点个数 rswt 时间/h
    1 13 0.89 10
    2 16 0.94 23
    3 19 0.97 51
    下载: 导出CSV

    表  2  NURBS拟合廓形关键参数

    Table  2.   Key parameters of NURBS fitting profile

    型值点 型值点坐标 权因子权重 控制点坐标
    横坐标 纵坐标 横坐标 纵坐标
    1 -54.22 -16.79 0.6 -54.43 -16.09
    2 -50.88 -6.31 1.0 -51.01 -8.31
    3 -39.72 -1.57 1.0 -46.47 -3.07
    4 -25.27 -0.53 1.0 -33.27 -0.83
    5 0.00 0.00 0.9 -1.00 0.20
    6 27.81 -1.45 0.8 26.81 -1.25
    7 36.04 -2.77 0.9 35.04 -2.57
    8 41.39 -6.54 1.0 41.59 -6.34
    9 44.27 -11.48 1.0 44.57 -11.28
    10 45.10 -16.06 0.7 45.40 -15.86
    11 48.42 -12.88 0.9 49.42 -12.68
    12 54.25 -10.24 0.9 55.25 -10.04
    13 59.59 -9.07 1.0 60.09 -8.87
    14 64.99 -10.24 1.0 65.49 -10.04
    15 70.24 -13.06 0.9 70.74 -12.86
    16 73.82 -17.44 0.7 74.32 -17.24
    下载: 导出CSV

    表  3  车辆系统基本动力学参数

    Table  3.   Basic dynamics parameters of vehicle system

    参数 取值 参数 取值
    车体质量/kg 4.24×104 一系悬挂横向刚度之半/(kN·m-1) 4 000
    车体摇头惯量/(kg·m2) 2.08×106 一系悬挂纵向刚度之半/(kN·m-1) 2.8×104
    车体侧滚惯量/(kg·m2) 2.27×106 一系悬挂垂向阻尼之半/(kN·s·m-1) 17.7
    车体点头惯量/(kg·m2) 7.06×105 一系悬挂横向阻尼之半/(kN·s·m-1) 0
    构架质量/kg 3 100 一系悬挂纵向阻尼之半/(kN·s·m-1) 0
    构架摇头惯量/(kg·m2) 2 250 二系悬挂横向刚度之半/(kN·m-1) 148
    构架侧滚惯量/(kg·m2) 2 810 二系悬挂纵向刚度之半/(kN·m-1) 205
    构架点头惯量/(kg·m2) 5 050 二系悬挂纵向刚度之半/(kN·m-1) 145
    车轮质量/kg 1 850 二系悬挂垂向阻尼之半/(kN·s·m-1) 31.6
    车轮摇头惯量/(kg·m2) 717 二系悬挂横向阻尼之半/(kN·s·m-1) 24.5
    车轮侧滚惯量/(kg·m2) 717 二系悬挂纵向阻尼之半/(kN·s·m-1) 343
    一系悬挂垂向刚度之半/(kN·m-1) 1 216 车轮名义滚动圆半径/m 0.43
    下载: 导出CSV

    表  4  18号高速道岔辙叉区钢轨各关键截面参数

    Table  4.   Key section parameters of rail in frog area of No.18 high-speed turnout  mm

    长心轨 距离尖端长度 0 599 895 1 518 4 000
    顶宽 20 40 50 71 71
    顶高 -5.0 -1.6 0 0 0
    下载: 导出CSV

    表  5  辙叉区轨道系统动力学参数

    Table  5.   Dynamics parameters of track system in frog area

    参数 取值 参数 取值
    钢轨单位质量/(kg·m-1) 60.64 岔枕单位质量/(kg·m-1) 154
    钢轨侧滚惯性矩/m4 0.33×10-4 岔枕侧滚惯性矩/m4 2.49×10-4
    钢轨摇头惯性矩/m4 0.52×10-5 道床单位质量/(kg·m-1) 69.94
    道床侧滚惯性矩/m4 0.5×10-4 道床摇头惯性矩/m4 0.08×10-4
    钢轨横向刚度/(N·m-1) 5.0×107 岔枕横向刚度/(N·m-1) 5.0×107
    钢轨垂向刚度/(N·m-1) 2.5×107 岔枕垂向刚度/(N·m-1) 1.0×108
    钢轨横向阻尼/(kN·s·m-1) 1.2×104 岔枕横向阻尼/(kN·s·m-1) 4.9×104
    钢轨垂向阻尼/(kN·s·m-1) 2.7×104 岔枕垂向阻尼/(kN·s·m-1) 9.4×104
    下载: 导出CSV
  • [1] 毛鑫, 沈钢. 基于轮径差函数的曲线钢轨打磨廓形设计[J]. 同济大学学报(自然科学版), 2018, 46(2): 253-259. doi: 10.11908/j.issn.0253-374x.2018.02.017

    MAO Xin, SHEN Gang. Curved rail grinding profile design based on rolling radii difference function[J]. Journal of Tongji University (Natural Science), 2018, 46(2): 253-259. (in Chinese) doi: 10.11908/j.issn.0253-374x.2018.02.017
    [2] 徐井芒, 王平, 徐浩, 等. 尖轨廓形对地铁道岔使用寿命的影响研究[J]. 铁道学报, 2014, 36(3): 75-79. doi: 10.3969/j.issn.1001-8360.2014.03.012

    XU Jing-mang, WANG Ping, XU Hao, et al. Study on impact of switch rail profile on service life of subway switches[J]. Journal of the China Railway Society, 2014, 36(3): 75-79. (in Chinese) doi: 10.3969/j.issn.1001-8360.2014.03.012
    [3] 徐井芒, 王平, 曾晓辉, 等. 地铁道岔轨顶坡对尖轨磨耗的影响[J]. 中南大学学报(自然科学版), 2014, 45(8): 2899-2904. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201408050.htm

    XU Jing-mang, WANG Ping, ZENG Xiao-hui, et al. Effect of rail top slope on subway switch rail wear[J]. Journal of Central South University (Science and Technology), 2014, 45(8): 2899-2904. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201408050.htm
    [4] XU Jing-mang, WANG Jian, WANG Ping, et al. Study on the derailment behaviour of a railway wheelset with solid axles in a railway turnout[J]. Vehicle System Dynamics, 2020, 58(1): 123-143. doi: 10.1080/00423114.2019.1566558
    [5] 宗聪聪, 张让, 周云飞, 等. 道岔尖轨段打磨目标廓形优化研究[J]. 城市轨道交通研究, 2019, 22(1): 132-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201901035.htm

    ZONG Cong-cong, ZHANG Rang, ZHOU Yun-fei, et al. Optimization of grinding profile in switch point rail section[J]. Urban Mass Transit, 2019, 22(1): 132-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201901035.htm
    [6] 陈迪来, 沈钢, 毛鑫. 基于轮轨接触特征的转辙器区钢轨廓形设计[J]. 同济大学学报(自然科学版), 2019, 47(9): 1341-1349. doi: 10.11908/j.issn.0253-374x.2019.09.015

    CHEN Di-lai, SHEN Gang, MAO Xin. Design of rail profile in switch area based on wheel/rail contact characteristics[J]. Journal of Tongji University (Natural Science), 2019, 47(9): 1341-1349. (in Chinese) doi: 10.11908/j.issn.0253-374x.2019.09.015
    [7] 赵向东. 基于轮轨法向间隙的道岔钢轨廓形优化方法[J]. 铁道建筑, 2018, 58(3): 83-86. doi: 10.3969/j.issn.1003-1995.2018.03.21

    ZHAO Xiang-dong. Optimization method for turnout rail profile based on normal gap between wheel and rail[J]. Railway Engineering, 2018, 58(3): 83-86. (in Chinese) doi: 10.3969/j.issn.1003-1995.2018.03.21
    [8] NIELSEN J C O, PALSSON B A, TORSTENSSON P T. Switch panel design based on simulation of accumulated rail damage in a railway turnout[J]. Wear, 2016, 366/367: 241-248. doi: 10.1016/j.wear.2016.06.021
    [9] 林凤涛, 胡伟豪. 磨耗钢轨经济性打磨型面研究[J]. 铁道科学与工程学报, 2020, 17(10): 2493-2502. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202010007.htm

    LIN Feng-tao, HU Wei-hao. Study on the economical grinding surface of wear rail[J]. Journal of Railway Science and Engineering, 2020, 17(10): 2493-2502. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202010007.htm
    [10] LIN Feng-tao, ZHOU Shuang, DONG Xiao-qing, et al. Design method of LM thin flange wheel profile based on NURBS[J]. Vehicle System Dynamics, 2021, 59(1): 17-32. doi: 10.1080/00423114.2019.1657908
    [11] 文永蓬, 郑晓明, 吴爱中, 等. 基于BESO算法的城市轨道车轮拓扑优化[J]. 机械工程学报, 2020, 56(10): 191-199. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010024.htm

    WEN Yong-peng, ZHENG Xiao-ming, WU Ai-zhong, et al. Topology optimization of urban rail wheel based on BESO algorithm[J]. Journal of Mechanical Engineering, 2020, 56(10): 191-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010024.htm
    [12] 郑晓明, 文永蓬, 尚慧琳, 等. 考虑UIC强度准则的轨道车轮辐板渐进结构拓扑优化方法[J]. 交通运输工程学报, 2019, 19(5): 84-95. doi: 10.3969/j.issn.1671-1637.2019.05.010

    ZHENG Xiao-ming, WEN Yong-peng, SHANG Hui-lin, et al. Evolutionary structure topology optimization method of rail wheel web plate considering UIC strength criterion[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 84-95. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.05.010
    [13] 李浩, 赵国堂, 孙加林. 动车组侧向通过9号道岔动力特性仿真研究[J]. 中国铁道科学, 2017, 38(6): 30-36. doi: 10.3969/j.issn.1001-4632.2017.06.05

    LI Hao, ZHAO Guo-tang, SUN Jia-lin. Simulation research on dynamic characteristics of EMU passing through No. 9 turnout[J]. China Railway Science, 2017, 38(6): 30-36. (in Chinese) doi: 10.3969/j.issn.1001-4632.2017.06.05
    [14] 杨亮, 王树国, 游彦辉, 等. 城市轨道交通7号单开道岔结构优化与设计[J]. 铁道建筑, 2020, 60(4): 84-89. doi: 10.3969/j.issn.1003-1995.2020.04.19

    YANG Liang, WANG Shu-guo, YOU Yan-hui, et al. Optimization and design of single turnout structure of urban rail transit[J]. Railway Engineering, 2020, 60(4): 84-89. (in Chinese) doi: 10.3969/j.issn.1003-1995.2020.04.19
    [15] 钱瑶, 王平, 苏谦, 等. 轨底坡对高速铁路轮轨接触行为影响分析[J]. 铁道工程学报, 2018, 35(3): 18-25. doi: 10.3969/j.issn.1006-2106.2018.03.004

    QIAN Yao, WANG Ping, SU Qian, et al. Effect analysis of rail cant on the wheel-rail contact behavior of high-speed railway[J]. Journal of Railway Engineering Society, 2018, 35(3): 18-25. (in Chinese) doi: 10.3969/j.issn.1006-2106.2018.03.004
    [16] WANG Ping, XU Jing-mang, XIE Kai-ze, et al. Numerical simulation of rail profiles evolution in the switch panel of a railway turnout[J]. Wear, 2016, 366/367: 105-115. doi: 10.1016/j.wear.2016.04.014
    [17] 王健, 马晓川, 陈嘉胤, 等. 高速铁路CHN60N钢轨与不同车轮踏面匹配性能研究[J]. 铁道学报, 2017, 39(12): 94-101. doi: 10.3969/j.issn.1001-8360.2017.12.013

    WANG Jian, MA Xiao-chuan, CHEN Jia-yin, et al. Study of matching performance of CHN60N rail with different wheel treads in high-speed railway[J]. Journal of the China Railway Society, 2017, 39(12): 94-101. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.12.013
    [18] 陈嵘, 陈嘉胤, 王平, 等. 轮径差对道岔区轮轨接触几何和车辆过岔走行性能的影响[J]. 铁道学报, 2018, 40(5): 123-130. doi: 10.3969/j.issn.1001-8360.2018.05.018

    CHEN Rong, CHEN Jia-yin, WANG Ping, et al. Effect of wheel diameter difference on wheel-rail contact geometry and vehicle running behavior in turnout area[J]. Journal of the China Railway Society, 2018, 40(5): 123-130. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.05.018
    [19] 任尊松, 刘志明, 金学松. 心轨轨顶降低值对轮岔动态相互作用影响研究[J]. 铁道学报, 2009, 31(2): 79-83. doi: 10.3969/j.issn.1001-8360.2009.02.015

    REN Zun-song, LIU Zhi-ming, JIN Xue-song. Study on the influence of the nose rail height on the wheel-turnout interaction dynamics[J]. Journal of the China Railway Society, 2009, 31(2): 79-83. (in Chinese) doi: 10.3969/j.issn.1001-8360.2009.02.015
    [20] WAN C, MARKINE V L, SHEVTSOV I Y. Improvement of vehicle-turnout interaction by optimising the shape of crossing nose[J]. Vehicle System Dynamics, 2014, 52(11): 1517-1540. doi: 10.1080/00423114.2014.944870
    [21] PALSSON B A, NIELSEN J C O. Wheel-rail interaction and damage in switches and crossings[J]. Vehicle System Dynamics, 2012, 50(1): 43-58. doi: 10.1080/00423114.2011.560673
    [22] PALSSON B A. A linear wheel-crossing interaction model[J]. Journal of Rail and Rapid Transit, 2018, 232(10): 2431-2443. doi: 10.1177/0954409718772984
    [23] PALSSON B A. Design optimisation of switch rails in railway turnouts[J]. Vehicle System Dynamics, 2013, 51(10): 1619-1639. doi: 10.1080/00423114.2013.807933
    [24] CASANUEVA C, DOULGERAKIS E, JÖNSSON P A, et al. Influence of switches and crossings on wheel profile evolution in freight vehicles[J]. Vehicle System Dynamics, 2014, 52(S1): 317-337.
    [25] EKBERG A, AKESSON B, KABO E. Wheel/rail rolling contact fatigue-probe, predict, prevent[J]. Wear, 2014, 314(1/2): 2-12.
    [26] EKBERG A, KABO E, ANDERSON H. An engineering model for prediction of rolling contact fatigue of railway wheels[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25(10): 899-909. doi: 10.1046/j.1460-2695.2002.00535.x
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  1118
  • HTML全文浏览量:  551
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回