-
摘要: 以心轨顶宽20、35、50 mm处的辙叉区钢轨关键截面作为研究对象,基于NURBS曲线理论建立辙叉区钢轨廓形重构方法;以关键截面钢轨廓形上若干型值点为设计变量,以打磨材料去除量的减少和脱轨系数的降低为目标,以钢轨廓形几何特征和降低钢轨滚动接触疲劳为约束条件,设计出18号道岔辙叉区钢轨经济性打磨廓形;建立了轮轨接触有限元模型和车辆-轨道耦合动力学模型,进行了轮轨接触应力与动力学指标计算。分析结果表明:优化的打磨廓形接触点分布均匀,具有良好的轮轨接触几何特性;钢轨打磨材料去除量在2号截面处降低了17.2%;各截面Mises应力分别降低了8.7%、8.3%和11.5%,轮轨接触应力降幅分别为12.9%、15.8%和18.0%;列车逆侧向过岔时,轮轨横向力与车体横向振动加速度分别降低了10.3%和15.6%,脱轨系数与轮重减载率分别降低了8.1%和10.6%,疲劳因子降低了12.2%。可见,优化廓形在保证列车运行安全性的同时,提升了列车运行的平稳性以及辙叉区钢轨的使用寿命。Abstract: For the critical section of a rail in the frog area with top widths of 20, 35 and 50 mm of the core rail as the research object, the rail profile reconstruction method was developed to analyze the frog area based on the NURBS curve theory. Several types of data points on the rail profile of the key section were set as design variables, and the reduction of the removal amount of grinding material and derailment coefficient were taken as the objective, and the geometric characteristics of the rail profile and the rolling contact fatigue reduction of the rail were used as constraints, the economic grinding profile of the rail in the frog area of No.18 turnout was designed. The wheel-rail contact finite element model and vehicle-track coupling dynamic model were established, and the wheel-rail contact stresses and dynamics indexes were calculated. Analysis results show that the optimized grinding profile contact points are evenly distributed and have good wheel-rail contact geometric characteristics. The removal amount of the rail grinding material decreases by 17.2 % in section 2. The Mises stresses of each section decrease by 8.7%, 8.3%, and 11.5%, respectively, and the wheel-rail contact stresses decrease by 12.9%, 15.8%, and 18.0%, respectively. When the train reversely passing turnout branch, wheel-rail lateral force and lateral vibration acceleration of the car body decrease by 10.3% and 15.6%, respectively, the derailment coefficient and the wheel-load reduction rate decrease by 8.1% and 10.6%, respectively, and the fatigue index decreases by 12.2%. Therefore the optimized profile not only ensures train operation safety, but also improves train operation stability and the service life of the rail in frog areas. 5 tabs, 14 figs, 26 refs.
-
表 1 拟合廓形与标准廓形的相关系数
Table 1. Correlation coefficients between fitting profile and standard profile
情况 型值点个数 rswt 时间/h 1 13 0.89 10 2 16 0.94 23 3 19 0.97 51 表 2 NURBS拟合廓形关键参数
Table 2. Key parameters of NURBS fitting profile
型值点 型值点坐标 权因子权重 控制点坐标 横坐标 纵坐标 横坐标 纵坐标 1 -54.22 -16.79 0.6 -54.43 -16.09 2 -50.88 -6.31 1.0 -51.01 -8.31 3 -39.72 -1.57 1.0 -46.47 -3.07 4 -25.27 -0.53 1.0 -33.27 -0.83 5 0.00 0.00 0.9 -1.00 0.20 6 27.81 -1.45 0.8 26.81 -1.25 7 36.04 -2.77 0.9 35.04 -2.57 8 41.39 -6.54 1.0 41.59 -6.34 9 44.27 -11.48 1.0 44.57 -11.28 10 45.10 -16.06 0.7 45.40 -15.86 11 48.42 -12.88 0.9 49.42 -12.68 12 54.25 -10.24 0.9 55.25 -10.04 13 59.59 -9.07 1.0 60.09 -8.87 14 64.99 -10.24 1.0 65.49 -10.04 15 70.24 -13.06 0.9 70.74 -12.86 16 73.82 -17.44 0.7 74.32 -17.24 表 3 车辆系统基本动力学参数
Table 3. Basic dynamics parameters of vehicle system
参数 取值 参数 取值 车体质量/kg 4.24×104 一系悬挂横向刚度之半/(kN·m-1) 4 000 车体摇头惯量/(kg·m2) 2.08×106 一系悬挂纵向刚度之半/(kN·m-1) 2.8×104 车体侧滚惯量/(kg·m2) 2.27×106 一系悬挂垂向阻尼之半/(kN·s·m-1) 17.7 车体点头惯量/(kg·m2) 7.06×105 一系悬挂横向阻尼之半/(kN·s·m-1) 0 构架质量/kg 3 100 一系悬挂纵向阻尼之半/(kN·s·m-1) 0 构架摇头惯量/(kg·m2) 2 250 二系悬挂横向刚度之半/(kN·m-1) 148 构架侧滚惯量/(kg·m2) 2 810 二系悬挂纵向刚度之半/(kN·m-1) 205 构架点头惯量/(kg·m2) 5 050 二系悬挂纵向刚度之半/(kN·m-1) 145 车轮质量/kg 1 850 二系悬挂垂向阻尼之半/(kN·s·m-1) 31.6 车轮摇头惯量/(kg·m2) 717 二系悬挂横向阻尼之半/(kN·s·m-1) 24.5 车轮侧滚惯量/(kg·m2) 717 二系悬挂纵向阻尼之半/(kN·s·m-1) 343 一系悬挂垂向刚度之半/(kN·m-1) 1 216 车轮名义滚动圆半径/m 0.43 表 4 18号高速道岔辙叉区钢轨各关键截面参数
Table 4. Key section parameters of rail in frog area of No.18 high-speed turnout
mm 长心轨 距离尖端长度 0 599 895 1 518 4 000 顶宽 20 40 50 71 71 顶高 -5.0 -1.6 0 0 0 表 5 辙叉区轨道系统动力学参数
Table 5. Dynamics parameters of track system in frog area
参数 取值 参数 取值 钢轨单位质量/(kg·m-1) 60.64 岔枕单位质量/(kg·m-1) 154 钢轨侧滚惯性矩/m4 0.33×10-4 岔枕侧滚惯性矩/m4 2.49×10-4 钢轨摇头惯性矩/m4 0.52×10-5 道床单位质量/(kg·m-1) 69.94 道床侧滚惯性矩/m4 0.5×10-4 道床摇头惯性矩/m4 0.08×10-4 钢轨横向刚度/(N·m-1) 5.0×107 岔枕横向刚度/(N·m-1) 5.0×107 钢轨垂向刚度/(N·m-1) 2.5×107 岔枕垂向刚度/(N·m-1) 1.0×108 钢轨横向阻尼/(kN·s·m-1) 1.2×104 岔枕横向阻尼/(kN·s·m-1) 4.9×104 钢轨垂向阻尼/(kN·s·m-1) 2.7×104 岔枕垂向阻尼/(kN·s·m-1) 9.4×104 -
[1] 毛鑫, 沈钢. 基于轮径差函数的曲线钢轨打磨廓形设计[J]. 同济大学学报(自然科学版), 2018, 46(2): 253-259. doi: 10.11908/j.issn.0253-374x.2018.02.017MAO Xin, SHEN Gang. Curved rail grinding profile design based on rolling radii difference function[J]. Journal of Tongji University (Natural Science), 2018, 46(2): 253-259. (in Chinese) doi: 10.11908/j.issn.0253-374x.2018.02.017 [2] 徐井芒, 王平, 徐浩, 等. 尖轨廓形对地铁道岔使用寿命的影响研究[J]. 铁道学报, 2014, 36(3): 75-79. doi: 10.3969/j.issn.1001-8360.2014.03.012XU Jing-mang, WANG Ping, XU Hao, et al. Study on impact of switch rail profile on service life of subway switches[J]. Journal of the China Railway Society, 2014, 36(3): 75-79. (in Chinese) doi: 10.3969/j.issn.1001-8360.2014.03.012 [3] 徐井芒, 王平, 曾晓辉, 等. 地铁道岔轨顶坡对尖轨磨耗的影响[J]. 中南大学学报(自然科学版), 2014, 45(8): 2899-2904. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201408050.htmXU Jing-mang, WANG Ping, ZENG Xiao-hui, et al. Effect of rail top slope on subway switch rail wear[J]. Journal of Central South University (Science and Technology), 2014, 45(8): 2899-2904. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201408050.htm [4] XU Jing-mang, WANG Jian, WANG Ping, et al. Study on the derailment behaviour of a railway wheelset with solid axles in a railway turnout[J]. Vehicle System Dynamics, 2020, 58(1): 123-143. doi: 10.1080/00423114.2019.1566558 [5] 宗聪聪, 张让, 周云飞, 等. 道岔尖轨段打磨目标廓形优化研究[J]. 城市轨道交通研究, 2019, 22(1): 132-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201901035.htmZONG Cong-cong, ZHANG Rang, ZHOU Yun-fei, et al. Optimization of grinding profile in switch point rail section[J]. Urban Mass Transit, 2019, 22(1): 132-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201901035.htm [6] 陈迪来, 沈钢, 毛鑫. 基于轮轨接触特征的转辙器区钢轨廓形设计[J]. 同济大学学报(自然科学版), 2019, 47(9): 1341-1349. doi: 10.11908/j.issn.0253-374x.2019.09.015CHEN Di-lai, SHEN Gang, MAO Xin. Design of rail profile in switch area based on wheel/rail contact characteristics[J]. Journal of Tongji University (Natural Science), 2019, 47(9): 1341-1349. (in Chinese) doi: 10.11908/j.issn.0253-374x.2019.09.015 [7] 赵向东. 基于轮轨法向间隙的道岔钢轨廓形优化方法[J]. 铁道建筑, 2018, 58(3): 83-86. doi: 10.3969/j.issn.1003-1995.2018.03.21ZHAO Xiang-dong. Optimization method for turnout rail profile based on normal gap between wheel and rail[J]. Railway Engineering, 2018, 58(3): 83-86. (in Chinese) doi: 10.3969/j.issn.1003-1995.2018.03.21 [8] NIELSEN J C O, PALSSON B A, TORSTENSSON P T. Switch panel design based on simulation of accumulated rail damage in a railway turnout[J]. Wear, 2016, 366/367: 241-248. doi: 10.1016/j.wear.2016.06.021 [9] 林凤涛, 胡伟豪. 磨耗钢轨经济性打磨型面研究[J]. 铁道科学与工程学报, 2020, 17(10): 2493-2502. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202010007.htmLIN Feng-tao, HU Wei-hao. Study on the economical grinding surface of wear rail[J]. Journal of Railway Science and Engineering, 2020, 17(10): 2493-2502. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202010007.htm [10] LIN Feng-tao, ZHOU Shuang, DONG Xiao-qing, et al. Design method of LM thin flange wheel profile based on NURBS[J]. Vehicle System Dynamics, 2021, 59(1): 17-32. doi: 10.1080/00423114.2019.1657908 [11] 文永蓬, 郑晓明, 吴爱中, 等. 基于BESO算法的城市轨道车轮拓扑优化[J]. 机械工程学报, 2020, 56(10): 191-199. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010024.htmWEN Yong-peng, ZHENG Xiao-ming, WU Ai-zhong, et al. Topology optimization of urban rail wheel based on BESO algorithm[J]. Journal of Mechanical Engineering, 2020, 56(10): 191-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010024.htm [12] 郑晓明, 文永蓬, 尚慧琳, 等. 考虑UIC强度准则的轨道车轮辐板渐进结构拓扑优化方法[J]. 交通运输工程学报, 2019, 19(5): 84-95. doi: 10.3969/j.issn.1671-1637.2019.05.010ZHENG Xiao-ming, WEN Yong-peng, SHANG Hui-lin, et al. Evolutionary structure topology optimization method of rail wheel web plate considering UIC strength criterion[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 84-95. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.05.010 [13] 李浩, 赵国堂, 孙加林. 动车组侧向通过9号道岔动力特性仿真研究[J]. 中国铁道科学, 2017, 38(6): 30-36. doi: 10.3969/j.issn.1001-4632.2017.06.05LI Hao, ZHAO Guo-tang, SUN Jia-lin. Simulation research on dynamic characteristics of EMU passing through No. 9 turnout[J]. China Railway Science, 2017, 38(6): 30-36. (in Chinese) doi: 10.3969/j.issn.1001-4632.2017.06.05 [14] 杨亮, 王树国, 游彦辉, 等. 城市轨道交通7号单开道岔结构优化与设计[J]. 铁道建筑, 2020, 60(4): 84-89. doi: 10.3969/j.issn.1003-1995.2020.04.19YANG Liang, WANG Shu-guo, YOU Yan-hui, et al. Optimization and design of single turnout structure of urban rail transit[J]. Railway Engineering, 2020, 60(4): 84-89. (in Chinese) doi: 10.3969/j.issn.1003-1995.2020.04.19 [15] 钱瑶, 王平, 苏谦, 等. 轨底坡对高速铁路轮轨接触行为影响分析[J]. 铁道工程学报, 2018, 35(3): 18-25. doi: 10.3969/j.issn.1006-2106.2018.03.004QIAN Yao, WANG Ping, SU Qian, et al. Effect analysis of rail cant on the wheel-rail contact behavior of high-speed railway[J]. Journal of Railway Engineering Society, 2018, 35(3): 18-25. (in Chinese) doi: 10.3969/j.issn.1006-2106.2018.03.004 [16] WANG Ping, XU Jing-mang, XIE Kai-ze, et al. Numerical simulation of rail profiles evolution in the switch panel of a railway turnout[J]. Wear, 2016, 366/367: 105-115. doi: 10.1016/j.wear.2016.04.014 [17] 王健, 马晓川, 陈嘉胤, 等. 高速铁路CHN60N钢轨与不同车轮踏面匹配性能研究[J]. 铁道学报, 2017, 39(12): 94-101. doi: 10.3969/j.issn.1001-8360.2017.12.013WANG Jian, MA Xiao-chuan, CHEN Jia-yin, et al. Study of matching performance of CHN60N rail with different wheel treads in high-speed railway[J]. Journal of the China Railway Society, 2017, 39(12): 94-101. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.12.013 [18] 陈嵘, 陈嘉胤, 王平, 等. 轮径差对道岔区轮轨接触几何和车辆过岔走行性能的影响[J]. 铁道学报, 2018, 40(5): 123-130. doi: 10.3969/j.issn.1001-8360.2018.05.018CHEN Rong, CHEN Jia-yin, WANG Ping, et al. Effect of wheel diameter difference on wheel-rail contact geometry and vehicle running behavior in turnout area[J]. Journal of the China Railway Society, 2018, 40(5): 123-130. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.05.018 [19] 任尊松, 刘志明, 金学松. 心轨轨顶降低值对轮岔动态相互作用影响研究[J]. 铁道学报, 2009, 31(2): 79-83. doi: 10.3969/j.issn.1001-8360.2009.02.015REN Zun-song, LIU Zhi-ming, JIN Xue-song. Study on the influence of the nose rail height on the wheel-turnout interaction dynamics[J]. Journal of the China Railway Society, 2009, 31(2): 79-83. (in Chinese) doi: 10.3969/j.issn.1001-8360.2009.02.015 [20] WAN C, MARKINE V L, SHEVTSOV I Y. Improvement of vehicle-turnout interaction by optimising the shape of crossing nose[J]. Vehicle System Dynamics, 2014, 52(11): 1517-1540. doi: 10.1080/00423114.2014.944870 [21] PALSSON B A, NIELSEN J C O. Wheel-rail interaction and damage in switches and crossings[J]. Vehicle System Dynamics, 2012, 50(1): 43-58. doi: 10.1080/00423114.2011.560673 [22] PALSSON B A. A linear wheel-crossing interaction model[J]. Journal of Rail and Rapid Transit, 2018, 232(10): 2431-2443. doi: 10.1177/0954409718772984 [23] PALSSON B A. Design optimisation of switch rails in railway turnouts[J]. Vehicle System Dynamics, 2013, 51(10): 1619-1639. doi: 10.1080/00423114.2013.807933 [24] CASANUEVA C, DOULGERAKIS E, JÖNSSON P A, et al. Influence of switches and crossings on wheel profile evolution in freight vehicles[J]. Vehicle System Dynamics, 2014, 52(S1): 317-337. [25] EKBERG A, AKESSON B, KABO E. Wheel/rail rolling contact fatigue-probe, predict, prevent[J]. Wear, 2014, 314(1/2): 2-12. [26] EKBERG A, KABO E, ANDERSON H. An engineering model for prediction of rolling contact fatigue of railway wheels[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25(10): 899-909. doi: 10.1046/j.1460-2695.2002.00535.x