留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非线性超声的CL60车轮和U75V钢轨磨损检测方法

蔡智超 陈澜 李豪 秦涛 沈明学

蔡智超, 陈澜, 李豪, 秦涛, 沈明学. 基于非线性超声的CL60车轮和U75V钢轨磨损检测方法[J]. 交通运输工程学报, 2021, 21(6): 136-146. doi: 10.19818/j.cnki.1671-1637.2021.06.010
引用本文: 蔡智超, 陈澜, 李豪, 秦涛, 沈明学. 基于非线性超声的CL60车轮和U75V钢轨磨损检测方法[J]. 交通运输工程学报, 2021, 21(6): 136-146. doi: 10.19818/j.cnki.1671-1637.2021.06.010
CAI Zhi-chao, CHEN Lan, LI Hao, QIN Tao, SHEN Ming-xue. Wear detection method of CL60 railway wheel and U75V rail steel based on nonlinear ultrasound[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 136-146. doi: 10.19818/j.cnki.1671-1637.2021.06.010
Citation: CAI Zhi-chao, CHEN Lan, LI Hao, QIN Tao, SHEN Ming-xue. Wear detection method of CL60 railway wheel and U75V rail steel based on nonlinear ultrasound[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 136-146. doi: 10.19818/j.cnki.1671-1637.2021.06.010

基于非线性超声的CL60车轮和U75V钢轨磨损检测方法

doi: 10.19818/j.cnki.1671-1637.2021.06.010
基金项目: 

国家自然科学基金项目 51807065

江西省重点研发计划项目 20202BBEL53015

详细信息
    作者简介:

    蔡智超(1989-),男,江西丰城人,华东交通大学副教授,工学博士,从事电工理论与新技术、电磁无损检测、工程电磁场研究

    通讯作者:

    沈明学(1982-),男,浙江桐乡人,华东交通大学教授,工学博士

  • 中图分类号: U211.5

Wear detection method of CL60 railway wheel and U75V rail steel based on nonlinear ultrasound

Funds: 

National Natural Science Foundation of China 51807065

Key Research and Development Program of Jiangxi Province 20202BBEL53015

More Information
  • 摘要: 针对早期轮轨滚动磨损变化过程难以通过无损手段进行表征的问题,提出了非线性超声技术对不同磨损程度的CL60车轮与U75V钢轨试样进行检测评估;建立了基于轮轨试样表面磨损特征的Murnaghan模型,并利用非线性超声有限元仿真,通过塑性变形层厚度变化情况模拟不同程度的摩擦损伤,分析了其相对非线性系数变化规律及其产生原因。试验结果表明:轮轨的早期磨损会导致材料表面产生塑性变形层,随着塑性变形的加剧,材料损伤将以微裂纹为主,车轮角加速度越大,轮轨间相对滑动作用时间越短,塑性变形层越薄,且CL60车轮较U75V钢轨磨损程度更为严重;CL60车轮试样在车轮角加速度分别为10、250、1 500 r·min-2时,对应的相对非线性系数分别为12.19、8.43、5.68,U75V钢轨试样在车轮角加速度分别为10、250、1 500 r·min-2时,对应的相对非线性系数分别为7.57、6.09、5.04,与CL60车轮试样相比,U75V钢轨试样的相对非线性系数变化缓慢。可知,相对非线性系数与塑性变形层厚度呈正相关,微裂纹产生的非线性效应比塑性变形层更强,相对非线性系数增幅更大,因此,可通过材料的相对非线性系数变化判断材料的磨损阶段。

     

  • 图  1  轮轨试样

    Figure  1.  Specimen of wheel and rail

    图  2  试样P3、Q3运行状态

    Figure  2.  Running status of P3 and Q3 specimens

    图  3  试样实物

    Figure  3.  Physical specimens

    图  4  切片试样

    Figure  4.  Slice specimens

    图  5  不同车轮角加速度下CL60车轮试样表面塑性变形区域局部形貌

    Figure  5.  Local morphologies of surface plastic deformation regions of CL60 wheel specimens under different wheel angular accelerations

    图  6  不同车轮角加速度下U75V钢轨试样表面塑性变形区域局部形貌

    Figure  6.  Local morphologies of surface plastic deformation regions of U75V rail specimens under different wheel angular accelerations

    图  7  超声波传播过程

    Figure  7.  Ultrasonic propagation processes

    图  8  激励电流波形

    Figure  8.  Excitation current waveform

    图  9  质点位移

    Figure  9.  Particle displacements

    图  10  质点位移频谱

    Figure  10.  Particle displacement frequency spectrum

    图  11  系统原理

    Figure  11.  System schematic

    图  12  试验系统线性标定

    Figure  12.  Linear calibration of test system

    图  13  接收到的超声信号

    Figure  13.  Received ultrasonic signals

    图  14  CL60车轮相对非线性系数与车轮角加速度的关系

    Figure  14.  Relationship between relative nonlinear coefficient of CL60 wheel and wheel angular acceleration

    图  15  U75V钢轨相对非线性系数与车轮角加速度的关系

    Figure  15.  Relationship between relative nonlinear coefficient of U75V rail and wheel angular acceleration

    表  1  轮轨材料化学成分

    Table  1.   Chemical compositions of wheel and rail materials  %

    成分 C Si Mn P S
    CL60材料 0.540 0.218 0.667 0.008 0.003
    U75V材料 0.798 0.660 0.980 0.005 0.013
    下载: 导出CSV

    表  2  车轮试样试验方案

    Table  2.   Test schemes of wheel specimens

    车轮试样 车轮角加速度/(r·min-2) 最大速度/(r·min-1) 最小速度/(r·min-1) 最大/最小速度保持时间/s
    P1 ±10 525 500 5
    P2 ±250 525 500 5
    P3 ±1 500 525 500 5
    下载: 导出CSV
  • [1] 董永刚, 仪帅, 黄鑫磊, 等. 重载列车紧急制动过程车轮踏面疲劳裂纹萌生寿命预测[J]. 中国铁道科学, 2021, 42(5): 123-131. doi: 10.3969/j.issn.1001-4632.2021.05.14

    DONG Yong-gang, YI Shuai, HUANG Xin-lei, et al. Prediction of fatigue crack initiation life of wheel tread during emergency braking of heavy haul train[J]. China Railway Science, 2021, 42(5): 123-131. (in Chinese) doi: 10.3969/j.issn.1001-4632.2021.05.14
    [2] 马晓川, 刘林芽, 冯青松, 等. 铁路钢轨裂纹萌生的键型近场动力学预测模型[J]. 交通运输工程学报, 2021, 21(3): 228-237. doi: 10.19818/j.cnki.1671-1637.2021.03.015

    MA Xiao-chuan, LIU Lin-ya, FENG Qing-song, et al. Prediction model of rail crack initiation using bond-based peridynamics theory[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 228-237. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.03.015
    [3] 任安超, 朱敏, 费俊杰, 等. U75V和U68CrCu钢轨钢早期腐蚀机理研究[J]. 中国铁道科学, 2014, 35(5): 7-12. doi: 10.3969/j.issn.1001-4632.2014.05.02

    REN An-chao, ZHU Min, FEI Jun-jie, et al. Early corrosion mechanism of U75V and U68CrCu rail steel[J]. China Railway Science, 2014, 35(5): 7-12. (in Chinese) doi: 10.3969/j.issn.1001-4632.2014.05.02
    [4] 昝晓东, 李孝滔, 邢帅兵, 等. 疲劳裂纹扩展引起的钢轨表面剥离研究[J]. 铁道科学与工程学报, 2018, 15(12): 3082-3088. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201812009.htm

    ZAN Xiao-dong, LI Xiao-tao, XING Shuai-bing, et al. Analysis of rail surface shelling resulting from fatigue crack propagation[J]. Journal of Railway Science and Engineering, 2018, 15(12): 3082-3088. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201812009.htm
    [5] 曹世豪, 李佳莉, 杨荣山, 等. 滚动接触作用下钢轨表面裂纹扩展机理分析[J]. 华中科技大学学报(自然科学版), 2017, 45(4): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201704003.htm

    CAO Shi-hao, LI Jia-li, YANG Rong-shan, et al. Propagation mechanism analysis of crack on rail surface under rolling contact[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(4): 11-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201704003.htm
    [6] 肖乾, 王丹红, 陈道云, 等. 高速列车轮轨激励作用机理及其影响综述[J]. 交通运输工程学报, 2021, 21(3): 93-109. doi: 10.19818/j.cnki.1671-1637.2021.03.005

    XIAO Qian, WANG Dan-hong, CHEN Dao-yun, et al. Review on mechanism and influence of wheel-rail excitation of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 93-109. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.03.005
    [7] 敬霖, 刘凯. 车轮踏面缺陷引起的轮轨动态响应综述[J]. 交通运输工程学报, 2021, 21(1): 285-315. doi: 10.19818/j.cnki.1671-1637.2021.01.014

    JING Lin, LIU Kai. Review on wheel-rail dynamic responses caused by wheel tread defects[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 285-315. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.014
    [8] 赵鑫, 温泽峰, 王衡禹, 等. 中国轨道交通轮轨滚动接触疲劳研究进展[J]. 交通运输工程学报, 2021, 21(1): 1-35. doi: 10.19818/j.cnki.1671-1637.2021.01.001

    ZHAO Xin, WEN Ze-feng, WANG Heng-yu, et al. Research progress on wheel/rail rolling contact fatigue of rail transit in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 1-35. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.001
    [9] 周桂源, 何成刚, 文广, 等. 高速和低速工况下列车车轮的损伤行为对比[J]. 机械工程材料, 2016, 40(10): 6-10, 64. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201610002.htm

    ZHOU Gui-yuan, HE Cheng-gang, WEN Guang, et al. Comparison of damage behaviors of railway wheel under high and low speed conditions[J]. Materials for Mechanical Engineering, 2016, 40(10): 6-10, 64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201610002.htm
    [10] 周小林, 向延念, 陈秀方. U71Mn 50 kg·m-1普通碳素钢钢轨疲劳裂纹扩展速率试验研究[J]. 中国铁道科学, 2004, 25(3): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200403018.htm

    ZHOU Xiao-lin, XIANG Yan-nian, CHEN Xiu-fang. Test and study of fatigue fracture propagation of U71Mn 50 kg·m-1 ordinary carbon steel rail[J]. China Railway Science, 2004, 25(3): 87-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200403018.htm
    [11] 马明阳. 高速列车车轮磨耗预测及关键影响因素仿真分析[D]. 北京: 中国铁道科学研究院, 2016.

    MA Ming-yang. Prediction and key factors simulation on wheel wear of high-speed train[D]. Beijing: China Academy of Railway Sciences, 2016. (in Chinese)
    [12] 尹波润, 文永蓬, 尚慧琳. 基于元胞自动机方法的地铁车轮磨损动态建模与仿真[J]. 机械工程学报, 2019, 55(2): 135-146. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201902016.htm

    YIN Bo-run, WEN Yong-peng, SHANG Hui-lin. Dynamic modeling and simulation of metro wheel wear based on cellular automata method[J]. Journal of Mechanical Engineering, 2019, 55(2): 135-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201902016.htm
    [13] 申永代. U78CrV钢轨非典型线状剥离掉块伤损分析[J]. 金属材料与冶金工程, 2019, 47(5): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYI201905006.htm

    SHEN Yong-dai. Damage analysis of atypical linear exfoliations on U78CrV rails[J]. Metal Materials and Metallurgy Engineering, 2019, 47(5): 26-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNYI201905006.htm
    [14] ZHANG Xin, HAO Qiu-shi, WANG Kang-wei, et al. An investigation on acoustic emission detection of rail crack in actual application by chaos theory with improved feature detection method[J]. Journal of Sound and Vibration, 2018, 436: 165-182. https://www.sciencedirect.com/science/article/abs/pii/S0022460X18305935
    [15] ZHANG Xin, CUI Yi-ming, WANG Yan, et al. An improved AE detection method of rail defect based on multi-level ANC with VSS-LMS[J]. Mechanical Systems and Signal Processing, 2018, 99: 420-433.
    [16] PENG Jian-ping, TIAN Gui-yun, WANG Li, et al. Investigation into eddy current pulsed thermography for rolling contact fatigue detection and characterization[J]. NDT and E International, 2015, 74: 72-80. https://www.sciencedirect.com/science/article/pii/S0963869515000584
    [17] PATHAK M, ALAHAKOON S, SPIRYAGIN M, et al. Rail foot flaw detection based on a laser induced ultrasonic guided wave method[J]. Measurement, 2019, 148: 106922. https://www.sciencedirect.com/science/article/pii/S0263224119307791
    [18] NAGATO K, SHINTANI K, HAMAGUCHI T, et al. Real-time detection of microcracks with floating giant-magnetoresistance sensor in twin-disk sliding tests[J]. CIRP Annals, 2017, 66(1): 539-542.
    [19] 王嵘, 余祖俊, 朱力强, 等. 基于导波速度的无缝钢轨应力检测方法[J]. 中国铁道科学, 2018, 39(2): 18-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201802003.htm

    WANG Rong, YU Zu-jun, ZHU Li-qiang, et al. Detection method for stress in continuously welded rail based on guided wave velocity[J]. China Railway Science, 2018, 39(2): 18-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201802003.htm
    [20] HU Hong-wei, ZOU Zhi-cheng, JIANG You-bao, et al. Finite element simulation and experimental study of residual stress testing using nonlinear ultrasonic surface wave technique[J]. Applied Acoustics, 2019, 154: 11-17. https://www.sciencedirect.com/science/article/pii/S0003682X19301665
    [21] MAO Han-ying, ZHANG Yu-hua, MAO Han-ling, et al. The fatigue damage evaluation of gear in sugarcane presser using higher order ultrasonic nonlinear coefficients[J]. Results in Physics, 2018, 10: 601-606. https://www.sciencedirect.com/science/article/pii/S221137971830768X
    [22] 万楚豪, 刚铁, 刘斌, 等. 高速铁路钢轨疲劳过程的超声非线性系数表征[J]. 中国铁道科学, 2015, 36(5): 75-79. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201505012.htm

    WAN Chu-hao, GANG Tie, LIU Bin, et al. Characterization of nonlinear ultrasonic coefficient during rail fatigue process of high speed railway[J]. China Railway Science, 2015, 36(5): 75-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201505012.htm
    [23] 李伟, 张璐莹, 黄远航, 等. 碳纤维复合材料疲劳损伤的非线性超声评价方法[J]. 无损检测, 2019, 41(8): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201908002.htm

    LI Wei, ZHANG Lu-ying, HUANG Yuan-hang, et al. Nonlinear ultrasonic assessment method for fatigue damage of carbon fiber composite[J]. Nondestructive Testing, 2019, 41(8): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201908002.htm
    [24] HONG Ming, SU Zhong-qing, WANG Qiang, et al. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation[J]. Ultrasonics, 2014, 54: 770-778. https://www.sciencedirect.com/science/article/pii/S0041624X13002837
    [25] PANTEA C, OSTERHOUDT C F, SINHA D N. Determination of acoustical nonlinear parameter β of water using the finite amplitude method[J]. Ultrasonics, 2013, 53(5): 1012-1019.
    [26] LIU S M, BEST S, NEILD S A, et al. Measuring bulk material nonlinearity using harmonic generation[J]. NDT and E International, 2012(48): 46-53.
    [27] DENG Ming-xi. Analysis of second-harmonic generation of Lamb modes using a modal analysis approach[J]. Journal of Applied Physics, 2003(94): 4152-4159.
    [28] VEN DEN ABEELE K, SUTIN A, CARMELIET J, et al. Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS)[J]. NDT and E International, 2001, 34(4): 239-248. https://www.sciencedirect.com/science/article/pii/S0963869500000645
    [29] 周崎, 刘莹峰, 樊嘉琦, 等. 金属疲劳损伤的线性与非线性超声联合评价方法研究[J]. 中国测试, 2021, 47(5): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202105024.htm

    ZHOU Qi, LIU Ying-feng, FAN Jia-qi, et al. Research on linear and nonlinear ultrasonic joint evaluation method of metal fatigue damage[J]. China Measurement and Test, 2021, 47(5): 151-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202105024.htm
    [30] BJØRNØ L. Introduction to nonlinear acoustics[J]. Physics Procedia, 2010, 3(1): 5-16. https://www.sciencedirect.com/science/article/pii/S1875389210000040
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  528
  • HTML全文浏览量:  117
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回