留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全风化千枚岩复合改良土路用性能

赵秀绍 赵林浩 王梓尧 付智涛 耿大新 饶江龙 陈子溪

赵秀绍, 赵林浩, 王梓尧, 付智涛, 耿大新, 饶江龙, 陈子溪. 全风化千枚岩复合改良土路用性能[J]. 交通运输工程学报, 2021, 21(6): 147-159. doi: 10.19818/j.cnki.1671-1637.2021.06.011
引用本文: 赵秀绍, 赵林浩, 王梓尧, 付智涛, 耿大新, 饶江龙, 陈子溪. 全风化千枚岩复合改良土路用性能[J]. 交通运输工程学报, 2021, 21(6): 147-159. doi: 10.19818/j.cnki.1671-1637.2021.06.011
ZHAO Xiu-shao, ZHAO Lin-hao, WANG Zi-yao, FU Zhi-tao, GENG Da-xin, RAO jiang-long, CHEN Zi-xi. Road properties of completely weathered phyllite composite improved soil[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 147-159. doi: 10.19818/j.cnki.1671-1637.2021.06.011
Citation: ZHAO Xiu-shao, ZHAO Lin-hao, WANG Zi-yao, FU Zhi-tao, GENG Da-xin, RAO jiang-long, CHEN Zi-xi. Road properties of completely weathered phyllite composite improved soil[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 147-159. doi: 10.19818/j.cnki.1671-1637.2021.06.011

全风化千枚岩复合改良土路用性能

doi: 10.19818/j.cnki.1671-1637.2021.06.011
基金项目: 国家自然科学基金项目(52068027, 51668018, 51768021); 江西省交通运输厅科技项目(2021Z0004)
详细信息
    作者简介:

    赵秀绍(1978-),男,河南鹤壁人,华东交通大学副教授,工学博士,从事岩土工程研究

    通讯作者:

    赵林浩(1998-),男,陕西渭南人,华东交通大学工学硕士研究生

  • 中图分类号: U213.1

Road properties of completely weathered phyllite composite improved soil

Funds: National Natural Science Foundation of China (52068027, 51668018, 51768021); Science and Technology Project of Jiangxi Provincial Department of Transportation
More Information
  • 摘要: 为了充分利用全风化千枚岩作为路基填料,设计了红黏土掺和比分别为0、20%、40%、60%和100%,水泥掺量分别为0、3%和5%的组合改良方案,开展了改良土的界限含水率、抗剪强度和无侧限抗压强度试验,分析了改良土的路用性能。试验结果表明:当水泥掺量分别为3%与5%时,复合改良土的液限均低于40%,符合路基设计中液限低于40%的控制要求;改良土的黏聚力随红黏土掺和比与水泥掺量的增大而增大,内摩擦角随红黏土掺和比的增长先增大后减小,随水泥掺量的增大而增大,但两指标在水泥掺量大于3%时增长幅度较小。改良土路基极限承载力计算结果表明:5%水泥改良全风化千枚岩路基极限承载力仅为725.3 kPa,红黏土掺和比为40%改良全风化千枚岩路基极限承载力达到2 198.3 kPa,分别是全风化千枚岩路基承载力的2.34和7.10倍,因此,红黏土改良效果优于水泥;经过比较可得红黏土掺和比为40%,水泥掺量为3%是合理掺和方案,在28 d养护后,路基极限承载力计算值为4 247.7 kPa,液限为32.7%。微观机理分析结果表明:红黏土颗粒小于全风化千枚岩颗粒,当红黏土掺和比大于40%时可以包围千枚岩颗粒的点-点接触,增加了接触点数与接触面积,从而大大提高了改良土路基的极限承载力。无侧限抗压强度试验结果表明:优化方案改良土7 d无侧限抗压强度为487.25 kPa,满足铁路路基设计要求。

     

  • 图  1  千枚岩与红黏土

    Figure  1.  Phyllite and red clay

    图  2  界限含水率试验流程

    Figure  2.  Flow chart of limit moisture content test

    图  3  界限含水率试验

    Figure  3.  Limit moisture content test

    图  4  直剪试验

    Figure  4.  Direct shear test

    图  5  改良土wLλ变化曲线

    Figure  5.  Variation curves of wL with λ for improved soil

    图  6  改良土wLη变化曲线

    Figure  6.  Variation curves of wL with η for improved soil

    图  7  抗剪强度指标随λ变化曲线

    Figure  7.  Variation curves of shear strength indexes with λ

    图  8  抗剪强度指标随η的变化规律

    Figure  8.  Variation laws of shear strength indexes with η

    图  9  路基粉化

    Figure  9.  Subgrade flouring

    图  10  路基极限承载力计算模型

    Figure  10.  Calculation models of ultimate bearing capacity of subgrade

    图  11  极限承载力随红黏土掺和比的变化规律

    Figure  11.  Variation laws of ultimate bearing capacity with red clay blending ratio

    图  12  极限承载力随水泥掺量的变化规律

    Figure  12.  Variation laws of ultimate bearing capacity with cement content

    图  13  极限承载力随养护龄期的变化规律

    Figure  13.  Variation laws of ultimate bearing capacity with curing age

    图  14  改良土无侧限抗压试验结果

    Figure  14.  Unconfined compression test result of improved soil

    图  15  SU8010 SEM设备与制备试样

    Figure  15.  SU8010 SEM equipment and prepared samples

    图  16  改良土的电镜扫描图像

    Figure  16.  Scanning electron microscopes of improved soils

    表  1  试验材料物理指标

    Table  1.   Physical indices of test materials

    土的类型 液限/% 塑限/% 塑性指数 比重 最大干密度/(g·cm-3) 最优含水率/% 天然含水率/%
    全风化千枚岩 43.3 28.9 14.4 2.76 1.64 19.2 8.48
    红黏土 48.4 26.4 22.0 2.69 1.75 17.8 22.31
    下载: 导出CSV

    表  2  根据φ确定Nγ

    Table  2.   Determining Nγ according to φ

    φ/(°) Nγ φ/(°) Nγ
    21 4.31 31 22.65
    22 5.09 32 26.87
    23 6.00 33 31.94
    24 7.08 34 38.04
    25 8.34 35 45.41
    26 9.84 36 54.36
    27 11.60 37 65.27
    28 13.70 38 78.61
    29 16.18 39 95.03
    30 19.13 40 116.31
    下载: 导出CSV
  • [1] SIMON N, ROSLEE R, RAFEK A G, et al. Research article rock mass assessment using geological strength index (GSI) along the Ranau-Tambunan Road, Sabah, Malaysia[J]. Research Journal of Applied Sciences, Engineering and Technology, 2016, 12(1): 108-115. doi: 10.19026/rjaset.12.2309
    [2] 吴永胜, 谭忠盛, 喻渝, 等. 川西北茂县群千枚岩各向异性力学特性[J]. 岩土力学, 2018, 39(1): 207-215. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801026.htm

    WU Yong-sheng, TAN Zhong-sheng, YU Yu, et al. Anisotropically mechanical characteristics of Maoxian group phyllite in northwest of Sichuan Province[J]. Rock and Soil Mechanics, 2018, 39(1): 207-215. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801026.htm
    [3] LIU Fei-fei, MAO Xue-song, ZHANG Hui-jun, et al. Investigating the deformation property of weathered phyllite filling subgrade[J]. Journal of Testing and Evaluation, 2020, 48(5): 3643-3657.
    [4] FENG Wen-kai, HUANG Run-qiu, LI Tian-bin. Deformation analysis of a soft-hard rock contact zone surrounding a tunnel[J]. Tunnelling and Underground Space Technology, 2012, 32: 190-197. doi: 10.1016/j.tust.2012.06.011
    [5] LI Xin-zhe, WANG Geng-feng, CAO Ling. Test research on influence of water and mineral composition on physical and mechanical properties of phyllite[J]. Applied Mechanics and Materials, 2014, 496-500: 2398-2401. doi: 10.4028/www.scientific.net/AMM.496-500.2398
    [6] HU Kai-feng, FENG Qian, WANG Xu-tao. Experimental research on mechanical property of phyllite tunnel surrounding rock under different moisture state[J]. Geotechnical and Geological Engineering, 2017, 35(1): 303-311. doi: 10.1007/s10706-016-0107-6
    [7] GARZÓN E, SÁNCHEZ-SOTO P J, ROMERO E. Physical and geotechnical properties of clay phyllites[J]. Applied Clay Science, 2010, 48(3): 307-318. doi: 10.1016/j.clay.2009.12.022
    [8] GARZÓN E, CANO M, O'KELLY B C, et al. Phyllite clay-cement composites having improved engineering properties and material applications[J]. Applied Clay Science, 2015, 114(2): 229-233.
    [9] GARZÓN E, CANO M, OKELLY B C, et al. Effect of lime on stabilization of phyllite clays[J]. Applied Clay Science, 2016, 123(3): 329-334.
    [10] MORALES L, GARZÓN E, ROMERO E, et al. Microbiological induced carbonate (CaCO3) precipitation using clay phyllites to replace chemical stabilizers (cement or lime)[J]. Applied Clay Science, 2019, 174(1): 15-28.
    [11] YAO Kai, CHEN Qing-sheng, XIAO Hua-wen. Small-strain shear modulus of cement-treated marine clay[J]. Journal of Materials in Civil Engineering, 2020, 32(6): 04020114. doi: 10.1061/(ASCE)MT.1943-5533.0003153
    [12] MOUSAVI S E. Stabilization of compacted clay with cement and/or lime containing peat ash[J]. Road Materials and Pavement Design, 2017, 18(6): 1304-1321. doi: 10.1080/14680629.2016.1212729
    [13] 毛雪松, 朱凤杰, 黄喆, 等. 改良千枚岩填料的CBR值影响因素分析[J]. 重庆交通大学学报(自然科学版), 2017, 36(2): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201702008.htm

    MAO Xue-song, ZHU Feng-jie, HUANG Zhe, et al. Analysis of the influences on CBR value of improved phyllite filler as a fill[J]. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(2): 43-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201702008.htm
    [14] 贺建清, 罗婉, 蒋鑫, 等. 非饱和高液限红粘土土-水特征试验研究[J]. 自然灾害学报, 2014, 23(6): 249-255.

    HE Jian-qing, LUO Wan, JIANG Xin, et al. Experimental study on soil-water characteristics of red clay with unsaturated high liquid limit[J]. Journal of natural disasters, 2014, 23(6): 249-255. (in Chinese)
    [15] 赵秀绍, 付智涛, 耿大新, 等. 千枚岩土掺入红黏土微观结构与压缩特性试验研究[J]. 科学技术与工程, 2020, 20(21): 8732-8738. doi: 10.3969/j.issn.1671-1815.2020.21.045

    ZHAO Xiu-shao, FU Zhi-tao, GENG Da-xin, et al. Experimental research on microstructures and compression characteristics of phyllite weatherized soil blended with red clay[J]. Science Technology and Engineering, 2020, 20(21): 8732-8738. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.21.045
    [16] 蒋红光, 曹让, 马晓燕, 等. 考虑持水能力的黄泛区高液限黏土路用压实标准[J]. 湖南大学学报(自然科学版), 2019, 46(11): 154-163. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201911018.htm

    JIANG Hong-guang, CAO Rang, MA Xiao-yan, et al. Subgrade compaction control standard of high liquid limit clay in Shandong Yellow River Flood Area considering its water retaining characteristics[J]. Journal of Hunan University(Natural Sciences), 2019, 46(11): 154-163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201911018.htm
    [17] DU Bin, BAI Hai-bo, WU Guang-ming. Dynamic compression properties and deterioration of red-sandstone subject to cyclic wet-dry treatment[J]. Advances in Civil Engineering, 2019, 2019: 1-10.
    [18] XU You-wei, WILLIAMS D J, SERATI M. Investigation of shear strength of interface between roadbase and geosynthetics using large-scale single-stage and multi-stage direct shear test[J]. Road Materials and Pavement Design, 2020, 21(6): 1588-1611. doi: 10.1080/14680629.2018.1561378
    [19] 穆坤, 孔令伟, 张先伟, 等. 红黏土工程性状的干湿循环效应试验研究[J]. 岩土力学, 2016, 37(8): 2247-2253. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608016.htm

    MU Kun, KONG Ling-wei, ZHANG Xian-wei. et al. Experimental investigation on engineering behaviors of red clay under effect of wetting-drying cycles[J]. Rock and Soil Mechanics, 2016, 37(8): 2247-2253. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608016.htm
    [20] ZHAO Yu-long, GAO Ying, ZHANG Yi-luo, et al. Effect of fines on the drying crack resistance of composite soil stabilizer-stabilized gravel soil[J]. Road Materials and Pavement Design, 2019, 20(6): 1255-1274. doi: 10.1080/14680629.2018.1439766
    [21] SUBHRADEEP D, MONOWAR H. The strength behaviour of lime-stabilized plastic fibre-reinforced clayey soil[J]. Road Materials and Pavement Design, 2019, 20(8): 1757-1778. doi: 10.1080/14680629.2018.1468803
    [22] STOLTZ G, CUISINIER O, MASROURI F. Multi-scale analysis of the swelling and shrinkage of a lime-treated expansive clayeysoil[J]. Applied Clay Science, 2012, 61(1): 44-51.
    [23] MANDAL T, EDIL T B, TINJUM J M. Study on flexural strength, modulus, and fatigue cracking of cementitiously stabilized materials[J]. Road Materials and Pavement Design, 2018, 19(7): 1546-1562. doi: 10.1080/14680629.2017.1325772
    [24] AZZAM W R. Utilization of polymer stabilization for improvement of clay microstructures[J]. Applied Clay Science, 2014, 93-94: 94-101. doi: 10.1016/j.clay.2014.03.006
    [25] 张先伟, 孔令伟. 氧化铁胶体与黏土矿物的交互作用及其对黏土土性影响[J]. 岩土工程学报, 2014, 36(1): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401007.htm

    ZHANG Xin-wei, KONG Ling-wei. Interaction between iron oxide colloids and clay minerals and its effect on properties of clay[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 65-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401007.htm
    [26] 谭罗荣, 孔令伟. 某类红粘土的基本特性与微观结构模型[J]. 岩土工程学报, 2001, 23(4): 458-462. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200104017.htm

    TAN Luo-rong, KONG Ling-wei. Fundamental property and microstructure model of red clay[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 458-462. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200104017.htm
    [27] ZHAO Xiu-shao, FU Zhi-tao, YANG Qi-jing, et al. Subgrade fill strength and bearing characteristics of weathered phyllite blended with red clay[J]. Road Materials and Pavement Design, 2020, 21(4): 1-20.
    [28] ZHAO Xiu-shao, WANG Zhi-yao, CHEN Kai-sheng, et al. Measurement and calculation of fissure area and density for shrinkage soil[J]. Earth and Environmental Science, 2020, 560(1): 1-6.
    [29] ZHAO Xiu-shao, YANG Qi-jing, RAO Jiang-long, et al. Study of mutual improvement of completed weathered phyllite and red clay based on neutralization effects of swelling and shrinkage deformation[J]. Journal of Renewable Materials, 2021, 9(12): 203-218.
    [30] 孔令伟, 罗鸿禧, 袁建新. 红粘土有效胶结特征的初步研究[J]. 岩土工程学报, 1995, 17(5): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC505.006.htm

    KONG Ling-wei, LUO Hong-xi, YUAN Jian-xin. Preliminary study on the effective cementation characteristics of the red clay[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 42-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC505.006.htm
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  652
  • HTML全文浏览量:  294
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-21
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回