留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车辆/轨道耦合作用下高速列车车轮振动影响灵敏度分析

肖乾 程玉琦 罗佳文 周生通 周前哲 曹涛影

肖乾, 程玉琦, 罗佳文, 周生通, 周前哲, 曹涛影. 车辆/轨道耦合作用下高速列车车轮振动影响灵敏度分析[J]. 交通运输工程学报, 2021, 21(6): 160-169. doi: 10.19818/j.cnki.1671-1637.2021.06.012
引用本文: 肖乾, 程玉琦, 罗佳文, 周生通, 周前哲, 曹涛影. 车辆/轨道耦合作用下高速列车车轮振动影响灵敏度分析[J]. 交通运输工程学报, 2021, 21(6): 160-169. doi: 10.19818/j.cnki.1671-1637.2021.06.012
XIAO Qian, CHENG Yu-qi, LUO Jia-wen, ZHOU Sheng-tong, ZHOU Qian-zhe, CAO Tao-ying. Sensitivity analysis of high-speed train wheel vibration influenced by vehicle-track coupling[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 160-169. doi: 10.19818/j.cnki.1671-1637.2021.06.012
Citation: XIAO Qian, CHENG Yu-qi, LUO Jia-wen, ZHOU Sheng-tong, ZHOU Qian-zhe, CAO Tao-ying. Sensitivity analysis of high-speed train wheel vibration influenced by vehicle-track coupling[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 160-169. doi: 10.19818/j.cnki.1671-1637.2021.06.012

车辆/轨道耦合作用下高速列车车轮振动影响灵敏度分析

doi: 10.19818/j.cnki.1671-1637.2021.06.012
基金项目: 

国家自然科学基金项目 51975210

大功率交流传动电力机车系统集成国家重点实验室开放课题 13221430000480

详细信息
    作者简介:

    肖乾(1977-),男,湖南常德人,华东交通大学教授,工学博士,从事车辆-轨道耦合动力学研究

    通讯作者:

    程玉琦(1995-),女,江西上饶人,华东交通大学工学硕士研究生

  • 中图分类号: U260.11

Sensitivity analysis of high-speed train wheel vibration influenced by vehicle-track coupling

Funds: 

National Natural Science Foundation of China 51975210

Open Poject of State Key Laboratory of Heavy Duty AC Drive Electric Locomotives System Integration 13221430000480

More Information
  • 摘要: 考虑车辆一系、二系悬挂参数和轨道参数的随机性,在多体动力学软件UM当中建立了CRH2动车组拖车的随机性仿真模型;采用最优拉丁超立方试验设计方法抽取车辆参数和轨道参数的随机样本,利用多目标优化软件iSight调用随机样本,联合UM完成了随机样本仿真分析;在有限试验设计样本和仿真数据的限制下,以最佳近似精度为目标,结合最小角回归、低阶交互截断和留一法交叉验证等实现了多项式混沌展开,构建多项式混沌展开代理模型;采用Sobol法进行全局灵敏度分析,研究了直线、曲线2种工况下车辆参数和轨道参数随机耦合作用对于车轮振动特性的影响,找出了主要影响因子,并考虑了多参数之间的交互效应。研究结果表明:多项式混沌展开法能够基于已有的样本比较好地拟合出代理模型,计算出Sobol灵敏度系数,平均误差低于3%,从而可以高效、定量地分析各参数耦合作用对车轮振动的影响;转臂节点横向刚度、一系弹簧垂向刚度、一系弹簧横向刚度和二系横向减振器阻尼是对车轮振动响应方差具有较大贡献的车辆参数,轨道横向、垂向刚度是对车轮振动响应方差具有较大贡献的轨道参数,各参数之间存在明显交互效应。

     

  • 图  1  车辆/轨道耦合动力学模型

    Figure  1.  Vehicle-track coupling dynamics model

    图  2  整车模型

    Figure  2.  Vehicle model

    图  3  轨道谱

    Figure  3.  Orbital spectrums

    图  4  UM-iSight联合仿真流程

    Figure  4.  UM-iSight joint simulation process

    图  5  直线工况下设计参数对车轮垂向加速度的灵敏度

    Figure  5.  Sensitivities of design parameters to wheel vertical acceleration under straight line condition

    图  6  直线工况下计参数对车轮垂向加速度的二阶交互效应

    Figure  6.  Second-order interaction effects of design parameters to wheel vertical acceleration under straight line condition

    图  7  直线工况下设计参数对车轮垂向位移的灵敏度

    Figure  7.  Sensitivities of design parameters to wheel vertical displacement under straight line condition

    图  8  直线工况下设计参数对车轮横向加速度的灵敏度

    Figure  8.  Sensitivities of design parameters to wheel lateral acceleration under straight line condition

    图  9  直线工况下设计参数对车轮横向位移的灵敏度

    Figure  9.  Sensitivities of design parameters to wheel lateral displacement under straight line condition

    图  10  曲线工况下设计参数对车轮垂向加速度的灵敏度

    Figure  10.  Sensitivities of design parameters to wheel vertical acceleration under curved condition

    图  11  曲线工况下设计参数对车轮垂向加速度的二阶交互效应

    Figure  11.  Second-order interaction effects of design parameters on wheel vertical acceleration under curved condition

    图  12  曲线工况下设计参数对车轮垂向位移的灵敏度

    Figure  12.  Sensitivities of design parameters to wheel vertical displacement under curved condition

    图  13  曲线工况下设计参数对车轮横向加速度的灵敏度

    Figure  13.  Sensitivities of design parameters to wheel lateral acceleration under curved condition

    图  14  曲线工况下设计参数对车轮横向加速度的二阶交互效应

    Figure  14.  Second-order interaction effects of design parameters on wheel lateral acceleration under curved condition

    图  15  曲线工况下设计参数对车轮横向位移的灵敏度

    Figure  15.  Sensitivities of design parameters to wheel lateral displacement under curved condition

    图  16  曲线工况下设计参数对车轮横向位移的二阶交互效应

    Figure  16.  Second-order interaction effect of design parameters on wheel lateral displacement under curved condition

    表  1  参数

    Table  1.   Parameters

    参数代号 参数含义 参数初始值 变化范围/%
    T1 轨道侧滚刚度/(N·m-1) 1.37×107 ±20
    T2 转臂节点横向刚度/(N·m-1) 1.00×105
    T3 轨道横向刚度/(N·m-1) 1.47×107
    T4 一系弹簧横向刚度/(N·m-1) 9.80×105
    T5 空气弹簧横向刚度/(N·m-1) 1.59×105
    T6 转臂节点垂向刚度/(N·m-1) 6.60×105
    T7 轨道垂向刚度/(N·m-1) 4.40×107
    T8 一系弹簧垂向刚度/(N·m-1) 1.76×106
    T9 轨道横向阻尼/[(N·s)·m-1] 6.50×106
    T10 轨道垂向阻尼/[(N·s)·m-1] 4.00×104
    T11 二系横向减振器阻尼/[(N·s)·m-1] 5.88×104
    T12 一系垂向减振器阻尼/[(N·s)·m-1] 1.96×104
    T13 二系垂向减振器阻尼/[(N·s)·m-1] 4.00×104
    下载: 导出CSV

    表  2  PCE模型拟合精度检验

    Table  2.   Fitting accuracy test of PCE model

    检验序号 车轮垂向加速度/% 车轮垂向位移/% 车轮横向加速度/% 车轮横向位移/%
    1 0.00 0.03 0.93 4.71
    2 0.00 0.08 0.83 2.32
    3 0.00 0.21 2.50 3.74
    4 0.00 0.15 0.13 0.40
    5 0.00 0.03 0.60 3.24
    6 0.00 0.16 2.19 3.88
    7 0.00 0.14 1.21 3.11
    8 0.00 0.43 3.32 2.72
    9 0.00 0.12 0.18 4.71
    10 0.00 0.15 2.19 0.82
    11 0.00 0.03 0.57 4.30
    12 0.00 0.19 1.01 3.44
    13 0.00 0.07 2.52 0.98
    14 0.00 0.40 3.75 1.26
    15 0.00 0.18 0.42 6.97
    16 0.00 0.60 2.00 1.05
    17 0.00 0.24 0.94 2.87
    18 0.00 0.48 0.74 1.55
    19 0.01 0.31 0.07 4.87
    20 0.00 0.51 4.38 1.59
    下载: 导出CSV
  • [1] 杨光, 任尊松, 孙守光. 考虑弹性的高速旋转轮对振动特性研究[J]. 振动工程学报, 2016, 29(4): 714-719. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201604019.htm

    YANG Guang, REN Zun-song, SUN Shou-guang. Research on the vibration characteristics of high-speed rotation elastic wheelset[J]. Journal of Vibration Engineering, 2016, 29(4): 714-719. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201604019.htm
    [2] 李哲, 高军伟, 张柏娜. 基于RFID的列车轮对识别与振动监控系统设计[J]. 仪表技术与传感器, 2020(11): 64-67, 73. doi: 10.3969/j.issn.1002-1841.2020.11.014

    LI Zhe, GAO Jun-wei, ZHANG Bai-na. Design of train wheelset identification and vibration monitoring system based on RFID[J]. Instrument Technique and Sensor, 2020(11): 64-67, 73. (in Chinese) doi: 10.3969/j.issn.1002-1841.2020.11.014
    [3] 庞学苗, 李建伟, 邢宗义, 等. 基于频率切片小波变换的轨道列车轮对振动信号分析[J]. 铁道机车车辆, 2015, 35(增刊1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC2015S1008.htm

    PANG Xue-miao, LI Jian-wei, XING Zong-yi, et al. Analysis of wheel-rail vibration signal based on frequency sliced wavelet transform[J]. Railway Locomotive and Car, 2015, 35(Sup1): 26-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC2015S1008.htm
    [4] 马卫华, 许自强, 罗世辉, 等. 轮轴弯曲刚度对轮轨垂向动态载荷影响分析[J]. 机械工程学报, 2012, 48(6): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201206016.htm

    MA Wei-hua, XU Zi-qiang, LUO Shi-hui, et al. Influence of the wheel axle bending stiffness on the wheel/rail vertical dynamical load[J]. Chinese Journal of Mechanical Engineering, 2012, 48(6): 96-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201206016.htm
    [5] 张宝安. 柔性轮对结构振动对车辆动力学性能的影响[J]. 计算机辅助工程, 2013, 22(3): 19-23, 28. doi: 10.3969/j.issn.1006-0871.2013.03.004

    ZHANG Bao-an. Effect of structure vibration of flexible wheelset on vehicle dynamics performance[J]. Computer Aided Engineering, 2013, 22(3): 19-23, 28. (in Chinese) doi: 10.3969/j.issn.1006-0871.2013.03.004
    [6] HAUG E J, WEHAGE R A, MANI N K. Design sensitivity analysis of large-scale constrained dynamic mechanical systems[J]. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1984, 106(2): 156-162. doi: 10.1115/1.3258573
    [7] 余衍然, 李成, 姚林泉, 等. 基于傅里叶幅值检验扩展法的轨道车辆垂向模型全局灵敏度分析[J]. 振动与冲击, 2014, 33(6): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201406014.htm

    YU Yan-ran, LI Cheng, YAO Lin-quan, et al. Global sensitivity analysis on vertical model of railway vehicle based on extended Fourier amplitude sensitivity test[J]. Journal of Vibration and Shock, 2014, 33(6): 77-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201406014.htm
    [8] 张旭明, 王德信. 结构灵敏度分析的解析方法[J]. 河海大学学报, 1998, 26(5): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX805.008.htm

    ZHANG Xu-ming, WANG De-xin. Analytical method of structural sensitivity analysis[J]. Journal of Hohai University, 1998, 28(5): 47-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX805.008.htm
    [9] 聂祚兴, 于德介, 李蓉, 等. 基于Sobol'法的车身噪声传递函数全局灵敏度分析[J]. 中国机械工程, 2012, 23(14): 1753-1757. doi: 10.3969/j.issn.1004-132X.2012.14.027

    NIE Zuo-xing, YU De-jie, LI Rong, et al. Global sensitivity analysis of autobodies' noise transfer functions based on Sobol' method[J]. China Mechanical Engineering, 2012, 23(14): 1753-1757. (in Chinese) doi: 10.3969/j.issn.1004-132X.2012.14.027
    [10] SOBOL I M, LEVITAN Y L. On the use of variance reducing multipliers in Monte Carlo computations of a global sensitivity index[J]. Computer Physics Communications, 1999, 117(1/2): 52-61.
    [11] SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1/2/3): 271-280.
    [12] SOBOL I M. Theorems and examples on high dimensional model representation[J]. Reliability Engineering and System Safety, 2003, 79(2): 187-193. doi: 10.1016/S0951-8320(02)00229-6
    [13] BIGONI D, TRUE H, ENGSIG-KARUP A P. Sensitivity analysis of the critical speed in railway vehicle dynamics[J]. Vehicle System Dynamics, 2014, 52(Sup1): 272-286. doi: 10.1080/00423114.2014.898776
    [14] 邵永生, 李成, 成明. 基于Sobol'法的轨道车辆平稳性的全局灵敏度分析[J]. 铁道科学与工程学报, 2018, 15(3): 748-754. doi: 10.3969/j.issn.1672-7029.2018.03.027

    SHAO Yong-sheng, LI Cheng, CHENG Ming. Sensitivity analysis of rail vehicle front end energy absorption structure based on Sobol' method[J]. Journal of Railway Science and Engineering, 2018, 15(3): 748-754. (in Chinese) doi: 10.3969/j.issn.1672-7029.2018.03.027
    [15] 陈秉智, 汪驹畅. 基于Sobol'法的轨道车辆前端吸能结构灵敏度分析[J]. 铁道学报, 2020, 42(3): 63-68. doi: 10.3969/j.issn.1001-8360.2020.03.008

    CHEN Bing-zhi, WANG Ju-chang. Global sensitivity analysis of energy-absorbing structure for rail vehicle based on Sobol' method[J]. Journal of the China Railway Society, 2020, 42(3): 63-68. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.03.008
    [16] 张慧云. 基于径向基函数网络的高速列车参数设计与优化[D]. 成都: 西南交通大学, 2015.

    ZHANG Hui-yun. The high-speed train parameter design and optimazation based on radial basis function[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese)
    [17] 周生通, 祁强, 周新建, 等. 轴弯曲与不平衡柔性转子共振稳态响应随机分析[J]. 计算力学学报, 2020, 37(1): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202001004.htm

    ZHOU Sheng-tong, QI Qiang, ZHOU Xin-jian, et al. Stochastic analysis of resonance steady-state response of rotor with shaft bending and unbalance faults[J]. Chinese Journal of Computational Mechanics, 2020, 37(1): 20-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202001004.htm
    [18] 周生通, 张沛, 肖乾, 等. 单盘悬臂转子启动过程峰值响应全局灵敏度分析[J]. 振动与冲击, 2021, 40(11): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202111004.htm

    ZHOU Sheng-tong, ZHANG Pei, XIAO Qian, et al. Global sensitivity analysis for peak response of a cantilevered rotor with single disc during start-up[J]. Journal of Vibration and Shock, 2021, 40(11): 17-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202111004.htm
    [19] 周生通, 王迪, 肖乾, 等. 基于广义多项式混沌的跨座式单轨车辆随机平稳性分析[J]. 振动与冲击, 2021, 40(6): 190-200. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202106026.htm

    ZHOU Sheng-tong, WANG Di, XIAO Qian, et al. Stochastic stationarity analysis of a straddle monorail vehicle using the generalized polynomial chaos method[J]. Journal of Vibration and Shock, 2021, 40(6): 190-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202106026.htm
    [20] FORMAGGIA L, GUADAGNINI A, IMPERIALI I, et al. Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model[J]. Computational Geosciences, 2013, 17(1): 25-42. doi: 10.1007/s10596-012-9311-5
    [21] SUDRET B. Global sensitivity analysis using polynomial chaos expansions[J]. Reliability Engineering and System Safety, 2008, 93(7): 964-979. doi: 10.1016/j.ress.2007.04.002
    [22] GARCIA-CABREJO O, VALOCCHI A. Global sensitivity analysis for multivariate output using polynomial chaos expansion[J]. Reliability Engineering and System Safety, 2014, 126: 25-36. doi: 10.1016/j.ress.2014.01.005
    [23] 黄悦琛, 宋长青, 郭荣化. 基于广义多项式混沌展开的无人机飞行性能不确定性分析[J]. 飞行力学, 2021, 39(4): 25-32, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202104005.htm

    HUANG Yue-chen, SONG Chang-qing, GUO Rong-hua. Uncertainty analysis of unmanned aerial vehicle flight performance using general polynomial chaos expansion[J]. Flight Dynamics, 2021, 39(4): 25-32, 51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202104005.htm
    [24] 王晗, 严正, 徐潇源, 等. 基于稀疏多项式混沌展开的孤岛微电网全局灵敏度分析[J]. 电力系统自动化, 2019, 43(10): 44-52. doi: 10.7500/AEPS20180625006

    WANG Han, YAN Zheng, XU Xiao-yuan, et al. Global sensitivity analysisfor islanded microgrid based on sparse polynomial chaos expansion[J]. Automation of Electric Power Systems, 2019, 43(10): 44-52. (in Chinese) doi: 10.7500/AEPS20180625006
    [25] 刘安民, 高峰, 张青斌, 等. 基于多项式混沌展开方法的翼伞飞行不确定性[J]. 兵工学报, 2021, 42(7): 1392-1399. doi: 10.3969/j.issn.1000-1093.2021.07.006

    LIU An-min, GAO Feng, ZHANG Qing-bin, et al. Application of PCE method in parafoil-flight uncertainty analysis[J]. Acta Armamentarii, 2021, 42(7): 1392-1399. (in Chinese) doi: 10.3969/j.issn.1000-1093.2021.07.006
    [26] WIENER N, The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897. doi: 10.2307/2371268
    [27] GHANEM R, GHOSH D. Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition[J]. International Journal For Numerical Methods in Engineering. 2007, 72(4): 486-504. doi: 10.1002/nme.2025
    [28] 胡军, 张树道. 基于多项式混沌的全局敏感度分析[J]. 计算物理, 2016, 33(1): 1-14. doi: 10.3969/j.issn.1001-246X.2016.01.001

    HU Jun, ZHANG Shu-dao. Global sensitivity analysis based on polynomial chaos[J]. Chinese Journal of Computational Physics, 2016, 33(1): 1-14. (in Chinese) doi: 10.3969/j.issn.1001-246X.2016.01.001
    [29] 赵威, 卜令泽, 王伟. 稀疏偏最小二乘回归-多项式混沌展开代理模型方法[J]. 工程力学, 2018, 35(9): 44-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201809007.htm

    ZHAO Wei, BU Ling-ze, WANG Wei. Sparse partial least squares regression-polynomial chaos expansion metamodeling method[J]. Engineering Mechanics, 2018, 35(9): 44-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201809007.htm
    [30] 周如意, 丰文浩, 邓宗全, 等. 轮地力学模型参数灵敏度分析与主参数估计[J]. 航空学报, 2021, 42(1): 524076. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202101020.htm

    ZHOU Ru-yi, FENG Wen-hao, DENG Zong-quan, et al. Sensitivity analysis and dominant parameter estimation of wheel-terrain interaction model[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 524076. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202101020.htm
    [31] 付娜, 李成辉, 赵振航, 等. 车辆-轨道耦合作用下桥上减振双块式无砟轨道减振性能研究[J]. 铁道科学与工程学报, 2018, 15(5): 1095-1102. doi: 10.3969/j.issn.1672-7029.2018.05.001

    FU Na, LI Cheng-hui, ZHAO Zhen-hang, et al. Study on the vibration reduction performance of double-block ballastless damping track on bridge under vehicle-track coupling effect[J]. Journal of Railway Science and Engineering, 2018, 15(5): 1095-1102. (in Chinese) doi: 10.3969/j.issn.1672-7029.2018.05.001
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  212
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回