留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速动车组轴箱转臂节点性能对轮轨耦合振动的影响

侯茂锐 胡晓依 郭涛 罗俊 樊令举

侯茂锐, 胡晓依, 郭涛, 罗俊, 樊令举. 高速动车组轴箱转臂节点性能对轮轨耦合振动的影响[J]. 交通运输工程学报, 2021, 21(6): 170-180. doi: 10.19818/j.cnki.1671-1637.2021.06.013
引用本文: 侯茂锐, 胡晓依, 郭涛, 罗俊, 樊令举. 高速动车组轴箱转臂节点性能对轮轨耦合振动的影响[J]. 交通运输工程学报, 2021, 21(6): 170-180. doi: 10.19818/j.cnki.1671-1637.2021.06.013
HOU Mao-rui, HU Xiao-yi, GUO Tao, LUO Jun, FAN Ling-ju. Effect of axle box rotary arm node performance on wheel-rail coupling vibration for high-speed EMUs[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 170-180. doi: 10.19818/j.cnki.1671-1637.2021.06.013
Citation: HOU Mao-rui, HU Xiao-yi, GUO Tao, LUO Jun, FAN Ling-ju. Effect of axle box rotary arm node performance on wheel-rail coupling vibration for high-speed EMUs[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 170-180. doi: 10.19818/j.cnki.1671-1637.2021.06.013

高速动车组轴箱转臂节点性能对轮轨耦合振动的影响

doi: 10.19818/j.cnki.1671-1637.2021.06.013
基金项目: 

国家自然科学基金项目 U1734201

中国铁路总公司科技研究开发计划课题 2017G011-C

中国铁道科学研究院集团有限公司科研项目 2019YJ162

详细信息
    作者简介:

    侯茂锐(1985-),男,陕西咸阳人,中国铁道科学研究院集团有限公司副研究员,工学博士研究生,从事铁道机车车辆动力学与轮轨关系研究

    通讯作者:

    胡晓依(1972-),男,湖北松滋人,中国铁道科学研究院集团有限公司研究员,工学博士

  • 中图分类号: U266

Effect of axle box rotary arm node performance on wheel-rail coupling vibration for high-speed EMUs

Funds: 

National Natural Science Foundation of China U1734201

Project of Science and Technology Research and Development Plan of China Railway 2017G011-C

Project of Science and Technology of China Academy of Railway Sciences Co., Ltd 2019YJ162

More Information
    Author Bio:

    HOU Mao-rui(1985-), male, associate professor, doctoral student, houmaorui@126.com

    Corresponding author: HU Xiao-yi(1972-), male, professor, PhD, xiaoyihu@126.com
  • 摘要: 为分析钢轨波磨、车轮多边形等轮轨短波不平顺条件下轴箱转臂节点性能对轮轨耦合振动的影响,分别从仿真计算、现场试验和台架试验3个方面进行综合分析,通过建立车辆-轨道刚柔耦合系统动力学仿真模型,分析了钢轨波磨和车轮多边形对轮轨耦合振动的影响,并在武广高铁进行了钢轨波磨条件下新、旧轴箱转臂节点对轴箱振动响应的影响试验,在滚动试验台上进行了高阶车轮多边形条件下新、旧轴箱转臂节点对转向架振动响应的影响试验;对已服役运用120万公里的A、B型轴箱转臂节点进行了1 000万次疲劳耐久性试验,论证了服役轴箱转臂节点疲劳可靠性的安全裕量。研究结果表明:在钢轨波长为120 mm,车轮多边形为20阶,钢轨波磨和车轮多边形波深均为0.04 mm的条件下,当轴箱转臂节点径向刚度由40 MN·m-1增加到200 MN·m-1时,钢轨振动加速度、轴箱振动加速度和轮轨垂向力基本不变,在钢轨波磨和车轮多边形等短波激励下,轴箱转臂节点刚度变化不会对轮轨耦合振动产生明显影响;随着疲劳试验次数的增加,轴箱转臂节点径向和轴向刚度均逐渐下降,退役轴箱转臂节点在经历1 000万次疲劳耐久性试验后外观状态基本无改变,芯轴与橡胶粘接部分出现轻微开胶和裂纹,开胶和裂纹深度不大于5 mm,橡胶本体均无裂纹,各项性能满足《机车车辆用橡胶弹性元件通用技术条件》(TB/T 2843—2015)中的规定。

     

  • 图  1  车辆-轨道刚柔耦合系统动力学模型

    Figure  1.  Dynamics model of vehicle-track rigid-flexible coupling system

    图  2  钢轨波磨对轮轨耦合振动的影响

    Figure  2.  Effects of rail corrugation on wheel-rail coupling vibrations

    图  3  车轮多边形对轮轨耦合振动的影响

    Figure  3.  Effects of wheel polygon on wheel-rail coupling vibrations

    图  4  钢轨波磨测试

    Figure  4.  Rail corrugation test

    图  5  转向架振动测点

    Figure  5.  Vibration measuring points of bogie

    图  6  非波磨区段轴箱振动加速度

    Figure  6.  Vibration accelerations of axle boxes in non-rail corrugation section

    图  7  钢轨波磨区段轴箱振动加速度

    Figure  7.  Vibration accelerations of axle boxes in rail corrugation section

    图  8  滚动试验台

    Figure  8.  Rolling test bench

    图  9  驱动轮多边形阶次谱

    Figure  9.  Polygon order spectrum of driving wheel

    图  10  轴箱垂向振动加速度

    Figure  10.  Vertical vibration accelerations of axle boxes

    图  11  转臂定位座垂向振动加速度

    Figure  11.  Vertical vibration accelerations of rotary arm positioning seats

    图  12  轴箱转臂节点疲劳试验装置

    Figure  12.  Fatigue test apparatus of axle box rotary arm node

    图  13  A型轴箱转臂节点疲劳耐久性试验结果

    Figure  13.  Fatigue durability test results of type A axle box rotary arm node

    图  14  B型轴箱转臂节点疲劳耐久性试验结果

    Figure  14.  Fatigue durability test results of type B axle box rotary arm node

    表  1  轨道计算参数

    Table  1.   Track calculation parameters

    参数名称 参数值
    钢轨每延米质量/(kg·m-1) 60
    轨枕间距/m 0.63
    扣件垂向刚度/(MN·m-1) 23
    扣件横向刚度/(MN·m-1) 23
    扣件垂向阻尼/(kN·s·m-1) 75
    扣件横向阻尼/(kN·s·m-1) 60
    下载: 导出CSV

    表  2  轴箱转臂节点更换方案

    Table  2.   Replacement schemes of axle box rotary arm nodes

    轴位 更换前型号 更换前刚度/ (MN·m-1) 更换后型号 更换后刚度/ (MN·m-1) 更换前、后刚度变化率/%
    1 MTC 102.6 A 119.4 16.4
    94.6 124.2 31.3
    2 MTC 100.8 B 111.9 11.0
    116.9 113.6 -3.0
    下载: 导出CSV

    表  3  轴箱转臂节点疲劳耐久性试验工况

    Table  3.   Fatigue durability test conditions of axle box rotary arm node

    项目 径向 轴向
    载荷/kN 27 22
    频率/Hz 2 2
    下载: 导出CSV
  • [1] 罗仁, 曾京, 戴焕云, 等. 高速动车组线路运行适应性[J]. 交通运输工程学报, 2011, 11(6): 37-43. http://transport.chd.edu.cn/article/id/201106006

    LUO Ren, ZENG Jing, DAI Huan-yun, et al. Running adaptability of high-speed EMU[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 37-43. (in Chinese) http://transport.chd.edu.cn/article/id/201106006
    [2] 侯茂锐, 刘丰收, 胡晓依, 等. 我国典型高速铁路轮轨型面变化规律及匹配特性[J]. 中国铁道科学, 2020, 41(4): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202004012.htm

    HOU Mao-rui, LIU Feng-shou, HU Xiao-yi, et al. Typical wheel-rail profile change and matching characteristics of high- speed railway in China[J]. China Railway Science, 2020, 41(4): 99-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202004012.htm
    [3] 侯茂锐, 胡晓依, 宗仁莉, 等. 高速动车组转臂定位橡胶节点刚度对车辆动力学性能影响[J]. 中国铁道科学, 2021, 42(4): 120-128. doi: 10.3969/j.issn.1001-4632.2021.04.14

    HOU Mao-rui, HU Xiao-yi, ZONG Ren-li, et al. Influence of stiffness of arm positioning rubber node on vehicle dynamic performance for high-speed EMU[J]. China Railway Science, 2021, 42(4): 120-128. (in Chinese) doi: 10.3969/j.issn.1001-4632.2021.04.14
    [4] 肖俊恒, 闫子权, 涂英辉, 等. 轮轨振动对高铁扣件伤损的影响分析[J]. 中国铁路, 2017(11): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201711002.htm

    XIAO Jun-heng, YAN Zi-quan, TU Ying-hui, et al. On impact of wheel-rail vibration on HSR fastener damage[J]. China Railway, 2017(11): 10-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201711002.htm
    [5] 钱卿. 武广高铁车轮多边形综合整治研究[J]. 铁道机车车辆, 2019, 39(2): 50-54. doi: 10.3969/j.issn.1008-7842.2019.02.10

    QIAN Qing. Study on wheel polygon comprehensive improvement of Wuguang High-Speed Line[J]. Railway Locomotive and Car, 2019, 39(2): 50-54. (in Chinese) doi: 10.3969/j.issn.1008-7842.2019.02.10
    [6] 王文静, 李广君, 唐薇, 等. 高速动车组轴箱弹簧疲劳失效机理研究[J]. 铁道学报, 2015, 37(6): 41-47. doi: 10.3969/j.issn.1001-8360.2015.06.006

    WANG Wen-jing, LI Guang-jun, TANG Wei, et al. Research on mechanism of fatigue crack of high speed train axle box spring[J]. Journal of the China Railway Society, 2015, 37(6): 41-47. (in Chinese) doi: 10.3969/j.issn.1001-8360.2015.06.006
    [7] 钱铭. 我国铁路机车车辆修程修制改革初探[J]. 中国铁路, 2019(10): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201910001.htm

    QIAN Ming. Study on the reform of maintenance system and cycle for China's railway locomotive car[J]. China Railway, 2019(10): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201910001.htm
    [8] NIELSEN J C O, JOHANSSON A. Out-of-round railway wheels—a literature survey[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2000, 214(2): 79-91. doi: 10.1243/0954409001531351
    [9] 金学松, 吴越, 梁树林, 等. 高速列车车轮多边形磨耗、机理、影响和对策分析[J]. 机械工程学报, 2020, 56(16): 118-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202016014.htm

    JIN Xue-song, WU Yue, LIANG Shu-lin, et al. Characteristics, mechanism, influences and countermeasures of polygonal wear of high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(16): 118-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202016014.htm
    [10] 张隶新, 魏来, 王勇. 变刚度转臂定位节点对车辆动力学性能的影响[J]. 铁道车辆, 2016, 54(12): 1-4. doi: 10.3969/j.issn.1002-7602.2016.12.001

    ZHANG Li-xin, WEI Lai, WANG Yong. Effect of the positioning nodal point of rotary arm with variable stiffness on the dynamics performance of vehicles[J]. Rolling Stock, 2016, 54(12): 1-4. (in Chinese) doi: 10.3969/j.issn.1002-7602.2016.12.001
    [11] 宋志坤, 王皓, 胡晓依, 等. 服役转臂节点刚度对运营车辆动力学影响研究[J]. 铁道学报, 2020, 42(4): 35-42. doi: 10.3969/j.issn.1001-8360.2020.04.005

    SONG Zhi-kun, WANG Hao, HU Xiao-yi, et al. Study on influence of stiffness of service nodal point of rotary arm on operation vehicle dynamics[J]. Journal of the China Railway Society, 2020, 42(4): 35-42. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.04.005
    [12] 李密, 邬平波, 王玮, 等. 轴箱转臂定位节点温变特性对车辆动力学性能的影响[J]. 噪声与振动控制, 2018, 38(4): 111-115. doi: 10.3969/j.issn.1006-1355.2018.04.022

    LI Mi, WU Ping-bo, WANG Wei, et al. Influence of temperature varying characteristic of axle-box tumbler rubber nodes on vehicle's dynamics performance[J]. Noise and Vibration Control, 2018, 38(4): 111-115. (in Chinese) doi: 10.3969/j.issn.1006-1355.2018.04.022
    [13] BERG M. A non-linear rubber spring model for rail vehicle dynamics analysis[J]. Vehicle System Dynamics, 1998, 30(3/4): 197-212.
    [14] SHI Huai-long, WU Ping-bo. A nonlinear rubber spring model containing fractional derivatives for use in railroad vehicle dynamic analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(7): 1745-1759. doi: 10.1177/0954409715614871
    [15] 刘诗慧, 石怀龙, 王玮, 等. 基于物理参数的转向架定位橡胶节点动力学建模[J]. 交通运输工程学报, 2019, 19(6): 91-100. doi: 10.19818/j.cnki.1671-1637.2019.06.009

    LIU Shi-hui, SHI Huai-long, WANG Wei, et al. Dynamics modelling of positioning rubber joint of a bogie based on physical parameters[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 91-100. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.06.009
    [16] 董博. 高速动车组轴箱转臂定位节点刚度演变及安全性能分析[J]. 铁道运输与经济, 2018, 40(9): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201809021.htm

    DONG Bo. A safety performance analysis and stiffness evolution of axle box arm positioning node of high speed EMU[J]. Railway Transport and Economy, 2018, 40(9): 110-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201809021.htm
    [17] 何灼馀. 高速动车组转向架-系橡胶节点频率-刚度特性及其影响研究[D]. 成都: 西南交通大学, 2012.

    HE Zhuo-yu. Analysis of frequency-stiffness properties of primary suspension rubber joint in bogie of high-speed EMU and its influences[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
    [18] 卢翀, 戴贤春, 董博, 等. 轴箱定位节点有限元分析及试验研究[J]. 北京交通大学学报, 2018, 42(6): 91-96. doi: 10.11860/j.issn.1673-0291.2018.06.013

    LU Chong, DAI Xian-chun, DONG Bo, et al. Finite element analysis and test study of the axle box positioning joint[J]. Journal of Beijing Jiaotong University, 2018, 42(6): 91-96. (in Chinese) doi: 10.11860/j.issn.1673-0291.2018.06.013
    [19] 祁亚运, 戴焕云, 魏来, 等. 变刚度转臂定位节点对地铁车辆车轮磨耗的影响[J]. 振动与冲击, 2019, 38(6): 100-107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906015.htm

    QI Ya-yun, DAI Huan-yun, WEI Lai, et al. Influence of changing the rigid arm positioning node on the wheel wear of metro vehicles[J]. Journal of Vibration and Shock, 2019, 38(6): 100-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906015.htm
    [20] 丁智平, 杨荣华, 黄友剑, 等. 变刚度橡胶球铰的刚度特性与疲劳寿命分析[J]. 振动与冲击, 2014, 33(2): 99-104. doi: 10.3969/j.issn.1000-3835.2014.02.020

    DING Zhi-ping, YANG Rong-hua, HUANG You-jian, et al. Analysis on the stiffness and fatigue life of variable stiffness rubber bushing[J]. Journal of Vibration and Shock, 2014, 33(2): 99-104. (in Chinese) doi: 10.3969/j.issn.1000-3835.2014.02.020
    [21] 谷永磊, 赵国堂, 王衡禹, 等. 21-轨道振动特性对高速铁路钢轨波磨的影响[J]. 中国铁道科学, 2016, 37(4): 42-47. doi: 10.3969/j.issn.1001-4632.2016.04.07

    GU Yong-lei, ZHAO Guo-tang, WANG Heng-yu, et al. Effect of track vibration characteristics on rail corrugation of high speed railway[J]. China Railway Science, 2016, 37(4): 42-47. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.04.07
    [22] 刘国云, 曾京, 张波. 钢轨波磨对高速车辆振动特性的影响[J]. 振动与冲击, 2019, 38(6): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906021.htm

    LIU Guo-yun, ZENG Jing, ZHANG Bo. Influence of rail corrugation on high-speed vehicle vibration performances[J]. Journal of Vibration and Shock, 2019, 38(6): 137-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906021.htm
    [23] 吴磊, 钟硕乔, 金学松, 等. 车轮多边形化对车辆运行安全性能的影响[J]. 交通运输工程学报, 2011, 11(3): 47-54. doi: 10.3969/j.issn.1671-1637.2011.03.009

    WU Lei, ZHONG Shuo-qiao, JIN Xue-song, et al. Influence of polygonal wheel on running safety of vehicle[J]. Journal of Traffic and Transportation Engineering, 2011, 11(3): 47-54. (in Chinese) doi: 10.3969/j.issn.1671-1637.2011.03.009
    [24] 刘佳, 韩健, 肖新标, 等. 高速车轮非圆化磨耗对轴箱端盖异常振动影响初探[J]. 机械工程学报, 2017, 53(20): 98-105. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201720013.htm

    LIU Jia, HAN Jian, XIAO Xin-biao, et al. Influence of wheel non-circular wear on axle box cover abnormal vibration in high-speed train[J]. Journal of Mechanical Engineering, 2017, 53(20): 98-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201720013.htm
    [25] 吴越, 韩健, 刘佳, 等. 高速列车车轮多边形磨耗对轮轨力和转向架振动行为的影响[J]. 机械工程学报, 2018, 54(4): 37-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804006.htm

    WU Yue, HAN Jian, LIU Jia, et al. Effect of high-speed train polygonal wheels on wheel/rail contact force and bogie vibration[J]. Journal of Mechanical Engineering, 2018, 54(4): 37-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804006.htm
    [26] 查浩, 任尊松, 徐宁. 车轮扁疤激起的轴箱轴承冲击特性[J]. 交通运输工程学报, 2020, 20(4): 165-173. doi: 10.19818/j.cnki.1671-1637.2020.04.013

    ZHA Hao, REN Zun-song, XU Ning. Impact characteristics of axle box bearing due to wheel flat scars[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 165-173. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.013
    [27] 吴圣川, 任鑫焱, 康国政, 等. 铁路车辆部件抗疲劳评估的进展与挑战[J]. 交通运输工程学报, 2021, 21(1): 81-115. doi: 10.19818/j.cnki.1671-1637.2021.01.004

    WU Sheng-chuan, REN Xin-yan, KANG Guo-zheng, et al. Progress and challenge on fatigue resistance assessment of railway vehicle components[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 81-115. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.004
    [28] 胡晓依, 侯银庆, 宋志坤, 等. 基于柔性轮轨模型的车轮谐波磨耗对高速轮轨系统振动影响的仿真研究[J]. 中国铁道科学, 2018, 39(6): 81-89. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201806012.htm

    HU Xiao-yi, HOU Yin-qing, SONG Zhi-kun, et al. Simulation study on influence of harmonic wear of wheel on vibration of high-speed wheel-rail system based on flexible wheel-rail model[J]. China Railway Science, 2018, 39(6): 81-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201806012.htm
    [29] 郭涛, 侯银庆, 胡晓依, 等. 钢轨波磨对高速车辆动力学性能的影响[J]. 铁道建筑, 2019, 59(3): 111-115. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201903028.htm

    GUO Tao, HOU Yin-qing, HU Xiao-yi, et al. Influences of rail corrugations on dynamic performances of high speed vehicles[J]. Railway Engineering, 2019, 59(3): 111-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201903028.htm
    [30] 朱海燕, 王超文, 邬平波, 等. 基于小滚轮高频激励的高速列车齿轮箱箱体振动试验[J]. 交通运输工程学报, 2020, 20(5): 135-150. doi: 10.19818/j.cnki.1671-1637.2020.05.011

    ZHU Hai-yan, WANG Chao-wen, WU Ping-bo, et al. High-speed train gearbox housing vibration test based on small roller high-frequency excitation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 135-150. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.011
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  255
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-06
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回