留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横风下复线路堤高度对高速列车气动性能的影响

朱海燕 王宇豪 朱志和 袁遥 曾京 肖乾

朱海燕, 王宇豪, 朱志和, 袁遥, 曾京, 肖乾. 横风下复线路堤高度对高速列车气动性能的影响[J]. 交通运输工程学报, 2021, 21(6): 181-193. doi: 10.19818/j.cnki.1671-1637.2021.06.014
引用本文: 朱海燕, 王宇豪, 朱志和, 袁遥, 曾京, 肖乾. 横风下复线路堤高度对高速列车气动性能的影响[J]. 交通运输工程学报, 2021, 21(6): 181-193. doi: 10.19818/j.cnki.1671-1637.2021.06.014
ZHU Hai-yan, WANG Yu-hao, ZHU Zhi-he, YUAN Yao, ZENG Jing, XIAO Qian. Influence of double-track embankment height on aerodynamic performance of high-speed train under crosswind[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 181-193. doi: 10.19818/j.cnki.1671-1637.2021.06.014
Citation: ZHU Hai-yan, WANG Yu-hao, ZHU Zhi-he, YUAN Yao, ZENG Jing, XIAO Qian. Influence of double-track embankment height on aerodynamic performance of high-speed train under crosswind[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 181-193. doi: 10.19818/j.cnki.1671-1637.2021.06.014

横风下复线路堤高度对高速列车气动性能的影响

doi: 10.19818/j.cnki.1671-1637.2021.06.014
基金项目: 

国家自然科学基金项目 52162045

江西省自然科学基金项目 20202ACBL204008

江西省教育厅科技项目 GJJ200614

牵引动力国家重点实验室开放课题 TPL2007

载运工具与装备教育部重点实验室开放课题 KLCE2021-11

详细信息
    作者简介:

    朱海燕(1975-),江西新干人,男,华东交通大学副教授,工学博士,从事高速列车系统动力学疲劳强度研究

  • 中图分类号: U270.11

Influence of double-track embankment height on aerodynamic performance of high-speed train under crosswind

Funds: 

National Natural Science Foundation of China 52162045

Natural Science Foundation of Jiangxi Province 20202ACBL204008

Science and Technology Project of Jiangxi Education Department GJJ200614

Open Project of State Key Laboratory of Traction Power TPL2007

Open Project of Key Laboratory of Conveyance and Equipment of Ministry of Education KLCE2021-11

More Information
  • 摘要: 利用Creo软件建立了某型动车组头中尾3车编组和不同高度的路堤模型,通过Fluent软件模拟列车在车速分别为300和350 km·h-1,横风风速分别为17.10、20.70、24.40和28.40 m·s-1的环境下运行,将获取的高速列车气动力载荷施加到Simpack建立的动力学模型中,计算其动力学性能参数;深入分析了横风工况下高速列车在不同高度复线路堤背风侧运行时车体的压力分布、气流场结构、气动力与风致安全性,并重点探究了头车在不同运行速度和横风风速下的运行安全性。分析结果表明:在相同车速和横风环境下,随着路堤高度的增加,列车受到的侧向力整体呈增大趋势,尾车在横风作用下受到反向侧向力,头车所受侧向力最大,且升力持续增大,中间车所受升力相对较大,尾车所受阻力最大;横风环境下列车压力峰值点位于头车鼻尖处且向迎风侧偏移,各路堤高度工况下气流场结构基本相同,头车背风侧和底部转向架处有明显的涡流,但尾车处的涡流却在迎风侧,这可能是导致尾车反向侧向力的主因;脱轨系数、轮轴横向力、轮轨垂向力和轮重减载率均随路堤高度和横风风速的增大而增大,轮轨垂向力始终在安全限值内,当横风风速分别为24.40和28.40 m·s-1时,列车运行速度应分别低于350和300 km·h-1,以保证列车行车安全。

     

  • 图  1  计算域正视

    Figure  1.  Front view of computational domain

    图  2  计算域侧视

    Figure  2.  Side view of computational domain

    图  3  路堤截面

    Figure  3.  Embankment cross sections

    图  4  列车加密网格

    Figure  4.  Densified grids for train

    图  5  流场模拟区域

    Figure  5.  Flow field simulation area

    图  6  边界条件

    Figure  6.  Boundary conditions

    图  7  高速列车动力学模型

    Figure  7.  Dynamics model of high-speed train

    图  8  路堤高度分别为2和8 m时头车迎风侧压力

    Figure  8.  Windward side pressures of locomotive for embankment heights of 2 and 8 m, respectively

    图  9  路堤高分别为2和8 m时头车背风侧压力

    Figure  9.  Leeward side pressures of locomotive for embankment heights of 2 and 8 m, respectively

    图  10  路堤高分别为2和8 m时列车纵向对称截面压力

    Figure  10.  Pressures on longitudinally symmetrical cross section of train for embankment heights of 2 and 8 m, respectively

    图  11  头尾车横截面位置

    Figure  11.  Cross section positions of locomotive and caboose

    图  12  各路堤工况下头车横截面压力

    Figure  12.  Cross section pressures of locomotive under various embankment conditions

    图  13  各路堤工况下尾车横截面压力

    Figure  13.  Cross section pressures of caboose under various embankment conditions

    图  14  各路堤工况下头车周围气流轨迹与流场分布

    Figure  14.  Airflow trajectories and flow field distributions around locomotive under various embankment conditions

    图  15  各路堤工况下尾车周围气流轨迹与流场分布

    Figure  15.  Airflow trajectories and flow field distributions around caboose under various embankment conditions

    图  16  各路堤高度下列车的侧向力

    Figure  16.  Lateral forces of train at various embankment heights

    图  17  各路堤高度下列车升力

    Figure  17.  Lifts of train at various embankment heights

    图  18  各路堤高度下列车阻力

    Figure  18.  Resistances of train at various embankment heights

    图  19  各车力(矩)简化中心

    Figure  19.  Simplified centers of various vehicle forces (moments)

    图  20  车速为300 km·h-1时动力学性能指标

    Figure  20.  Dynamics performance indices for vehicle speed of 300 km·h-1

    图  21  350 km·h-1车速时动力学性能指标

    Figure  21.  Dynamics performance indices for vehicle speed of 350 km·h-1

    表  1  区域与网格无关性验证结果

    Table  1.   Area and grid independence verifications results

    模型 网格数/107 风速/(m·s-1) 侧向力/kN 阻力/kN
    原始模型 3.20 17.10 57.13 11.79
    区域无关性 3.75 17.10 57.48 11.67
    网格无关性 1.60 17.10 56.70 11.92
    4.10 17.10 57.65 11.70
    下载: 导出CSV

    表  2  数值模拟与风洞试验结果对比

    Table  2.   Comparison between numerical simulation and wind tunnel experiment results

    结果与误差 头车 中间车
    侧向力/kN 升力/kN 侧向力/kN 升力/kN
    风洞试验结果 36.10 19.70 16.50 28.20
    数值计算结果 39.80 21.30 15.80 27.20
    相对误差/% 9.20 7.20 -4.40 -3.60
    下载: 导出CSV
  • [1] 朱海燕, 胡华涛, 尹必超, 等. 轨道车辆车轮多边形研究进展[J]. 交通运输工程学报, 2020, 20(1): 102-119. doi: 10.19818/j.cnki.1671-1637.2020.01.008

    ZHU Hai-yan, HU Hua-tao, YIN Bi-chao, et al. Research progress on wheel polygons of rail vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 102-119. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.008
    [2] 朱海燕, 尹必超, 胡华涛, 等. 谐波转矩对高速列车齿轮箱体与牵引电机振动特性的影响[J]. 交通运输工程学报, 2019, 19(6): 65-76. doi: 10.19818/j.cnki.1671-1637.2019.06.007

    ZHU Hai-yan, YIN Bi-chao, HU Hua-tao, et al. Effects of harmonic torque on vibration characteristics of gear box housing and traction motor of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 65-76. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.06.007
    [3] HOPPMANN U, KOENIG S, TIELKES T, et al. A short-term strong wind prediction model for railway application: design and verification[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(10): 1127-1134. doi: 10.1016/S0167-6105(02)00226-X
    [4] TOMASINI G, GIAPPINO S, CORRADI R. Experimental investigation of the effects of embankment scenario on railway vehicle aerodynamic coefficients[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 131: 59-71. doi: 10.1016/j.jweia.2014.05.004
    [5] DIEDRICHS B, SIMA M, ORELLANO A, et al. Crosswind stability of a high-speed train on a high embankment[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2007, 221(2): 205-225. doi: 10.1243/0954409JRRT126
    [6] 张业, 孙振旭, 姚永芳, 等. 典型路基结构对高速列车横风气动特性影响分析[J]. 机械工程学报, 2018, 54(4): 186-195. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804028.htm

    ZHANG Ye, SUN Zhen-xu, YAO Yong-fang, et al. Influence of typical subgrade structures on aerodynamic characteristics of high speed trains in cross wind conditions[J]. Journal of Mechanical Engineering, 2018, 54(4): 186-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804028.htm
    [7] 韩运动, 陈大伟, 刘韶庆, 等. 不同风速风向条件下的列车风特性[J]. 中国铁道科学, 2018, 39(6): 104-111. doi: 10.3969/j.issn.1001-4632.2018.06.14

    HAN Yun-dong, CHEN Da-wei, LIU Shao-qing, et al. Characteristics of train induced wind under different wind speeds and directions[J]. China Railway Science, 2018, 39(6): 104-111. (in Chinese) doi: 10.3969/j.issn.1001-4632.2018.06.14
    [8] 毛军, 郗艳红, 高亮, 等. 横风作用下高速列车气动阻力[J]. 中南大学学报(自然科学版), 2014, 45(11): 4059-4067. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201411047.htm

    MAO Jun, XI Yan-hong, GAO Liang, et al. Aerodynamic drag of a high-speed train under cross wind conditions[J]. Journal of Central South University (Science and Technology), 2014, 45(11): 4059-4067. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201411047.htm
    [9] 李田, 张继业, 张卫华. 高速列车流固耦合的平衡状态方法[J]. 机械工程学报, 2013, 49(2): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201302017.htm

    LI Tian, ZHANG Ji-ye, ZHANG Wei-hua. Co-simulation of high-speed train fluid-structure interaction based on the equilibrium state[J]. Journal of Mechanical Engineering, 2013, 49(2): 95-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201302017.htm
    [10] 李田, 张继业, 张卫华. 横风下车辆-轨道耦合动力学性能[J]. 交通运输工程学报, 2011, 11(5): 55-60. http://transport.chd.edu.cn/article/id/201105009

    LI Tian, ZHANG Ji-ye, ZHANG Wei-hua. Coupling dynamics performance of vehicle track under cross wind[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 55-60. (in Chinese) http://transport.chd.edu.cn/article/id/201105009
    [11] 李田, 张继业, 张卫华. 横风下高速列车流固耦合动力学联合仿真[J]. 振动工程学报, 2012, 25(2): 138-145. doi: 10.3969/j.issn.1004-4523.2012.02.006

    LI Tian, ZHANG Ji-ye, ZHANG Wei-hua. Co-simulation of high-speed train fluid-structure interaction dynamics in crosswinds[J]. Journal of Vibration Engineering, 2012, 25(2): 138-145. (in Chinese) doi: 10.3969/j.issn.1004-4523.2012.02.006
    [12] 朱海燕, 张翼, 赵怀瑞, 等. 基于边界层控制的高速列车减阻技术[J]. 交通运输工程学报, 2017, 17(2): 64-72. doi: 10.3969/j.issn.1671-1637.2017.02.007

    ZHU Hai-yan, ZHANG Yi, ZHAO Huai-rui, et al. Drag reduction technology of high-speed train based on boundary layer control[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 64-72. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.02.007
    [13] 朱海燕, 胡华涛, 尹必超. 凸包非光滑表面高速列车气动阻力及噪声研究[J]. 华东交通大学学报, 2020, 37(4): 88-95. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT202004014.htm

    ZHU Hai-yan, HU Hua-tao, YIN Bi-chao. Research on aerodynamic resistance and noise of high-speed train with convex non-smooth surface[J]. Journal of East China Jiaotong University, 2020, 37(4): 88-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT202004014.htm
    [14] 于梦阁, 张继业, 张卫华. 随机风作用下高速列车的非定常气动载荷[J]. 机械工程学报, 2012, 48(20): 113-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201220023.htm

    YU Meng-ge, ZHANG Ji-ye, ZHANG Wei-hua. Unsteady aerodynamic loads of high-speed trains under stochastic winds[J]. Journal of Mechanical Engineering, 2012, 48(20): 113-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201220023.htm
    [15] 王政, 李田, 张继业. 不同类型横风下高速列车气动性能研究[J]. 机械工程学报, 2018, 54(4): 203-211. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804030.htm

    WANG Zheng, LI Tian, ZHANG Ji-ye. Research on aerodynamic performance of high-speed train subjected to different types of crosswind[J]. Journal of Mechanical Engineering, 2018, 54(4): 203-211. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804030.htm
    [16] 刘加利, 于梦阁, 张继业, 等. 基于大涡模拟的高速列车横风运行安全性研究[J]. 铁道学报, 2011, 33(4): 13-21. doi: 10.3969/j.issn.1001-8360.2011.04.003

    LIU Jia-li, YU Meng-ge, ZHANG Ji-ye, et al. Study on running safety of high-speed train under crosswind by large eddy simulation[J]. Journal of the China Railway Society, 2011, 33(4): 13-21. (in Chinese) doi: 10.3969/j.issn.1001-8360.2011.04.003
    [17] 邹思敏, 何旭辉, 王汉封, 等. 横风作用下高速列车-桥梁系统气动特性风洞试验[J]. 交通运输工程学报, 2020, 20(1): 132-139. doi: 10.19818/j.cnki.1671-1637.2020.01.010

    ZOU Si-min, HE Xu-hui, WANG Han-feng, et al. Wind tunnel experiment on aerodynamic characteristics of high-speed train-bridge system under crosswind[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 132-139. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.010
    [18] 李鹏, 梁习锋, 牛纪强. 突风口环境下的高速列车周围流场数值模拟[J]. 铁道科学与工程学报, 2017, 14(6): 1113-1121. doi: 10.3969/j.issn.1672-7029.2017.06.001

    LI Peng, LIANG Xi-feng, NIU Ji-qiang. Numerical simulation of the flow around a high-speed train moving through a crosswind flow[J]. Journal of Railway Science and Engineering, 2017, 14(6): 1113-1121. (in Chinese) doi: 10.3969/j.issn.1672-7029.2017.06.001
    [19] GUO Di-long, SHANG Ke-ming, ZHANG Ye, et al. Influences of affiliated components and train length on the train wind[J]. Acta Mechanica Sinica, 2016, 32(2): 191-205. doi: 10.1007/s10409-015-0553-z
    [20] 曾永平, 李永乐, 张明金, 等. 高路堤上列车横风荷载的分布研究[J]. 铁道科学与工程学报, 2018, 15(10): 2471-2477. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201810003.htm

    ZENG Yong-ping, LI Yong-le, ZHANG Ming-jin, et al. Study on the distribution of wind load of the train on the high embankment[J]. Journal of Railway Science and Engineering, 2018, 15(10): 2471-2477. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201810003.htm
    [21] 张胜, 戴志远, 李田. 明线运行列车气动地面效应数值模拟[J]. 交通运输工程与信息学报, 2020, 18(1): 120-125, 132. doi: 10.3969/j.issn.1672-4747.2020.01.016

    ZHANG Sheng, DAI Zhi-yuan, LI Tian. Numerical simulation of aerodynamic ground effect of a train running in the open air[J]. Journal of Transportation Engineering and Information, 2020, 18(1): 120-125, 132. (in Chinese) doi: 10.3969/j.issn.1672-4747.2020.01.016
    [22] 周鹏, 常城, 李田, 等. 悬挂系统参数对高速列车横风运行安全性的影响[J]. 交通运输工程与信息学报, 2020, 18(4): 83-92. doi: 10.3969/j.issn.1672-4747.2020.04.011

    ZHOU Peng, CHANG Cheng, LI Tian, et al. Effect of suspension-system parameters on crosswind stability of high-speed trains[J]. Journal of Transportation Engineering and Information, 2020, 18(4): 83-92. (in Chinese) doi: 10.3969/j.issn.1672-4747.2020.04.011
    [23] 翟建平, 张继业, 李田. 横风下高速列车动力学参数的多目标优化[J]. 交通运输工程学报, 2020, 20(3): 80-88. doi: 10.19818/j.cnki.1671-1637.2020.03.007

    ZHAI Jian-ping, ZHANG Ji-ye, LI Tian. Multi-objective optimization for dynamics parameters of high-speed trains under side wind[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 80-88. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.03.007
    [24] LI Tian, QIN Deng, ZHANG Ji-ye. Effect of RANS turbulence model on aerodynamic behavior of trains in crosswind[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 1-12. doi: 10.1186/s10033-018-0313-7
    [25] LI Tian, ZHANG Ji-ye, RASHIDI M M, et al. On the Reynolds-averaged Navier-Stokes modelling of the flow around a simplified train in crosswinds[J]. Journal of Applied Fluid Mechanics, 2019, 12(2): 551-563. doi: 10.29252/jafm.12.02.28958
    [26] 张亮, 张继业, 李田, 等. 横风下高速列车的非定常气动特性及安全性[J]. 机械工程学报, 2016, 52(6): 124-135. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201606017.htm

    ZHANG Liang, ZHANG Ji-ye, LI Tian, et al. Unsteady aerodynamic characteristics and safety of high-speed trains under crosswinds[J]. Journal of Mechanical Engineering, 2016, 52(6): 124-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201606017.htm
    [27] GUO Zi-jian, LIU Tang-hong, CHEN Zheng-wei, et al. Aerodynamic influences of bogie's geometric complexity on high-speed trains under crosswind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 196: 104053. doi: 10.1016/j.jweia.2019.104053
    [28] LI Hai-qing, YU Meng-ge, ZHANG Qian, et al. A numerical study of the aerodynamic characteristics of a high-speed train under the effect of crosswind and rain[J]. Fluid Dynamics and Materials Processing, 2020, 16(1): 77-90. doi: 10.32604/fdmp.2020.07797
    [29] DENG E, YANG Wei-chao, HE Xu-hui, et al. Aerodynamic response of high-speed trains under crosswind in a bridge-tunnel section with or without a wind barrier[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 210: 104502. doi: 10.1016/j.jweia.2020.104502
    [30] FAVRE T, EFRAIMSSON G. An assessment of detached- eddy simulations of unsteady crosswind aerodynamics of road vehicles[J]. Flow, Turbulence and Combustion, 2011, 87(1): 133-163. doi: 10.1007/s10494-011-9333-4
    [31] 田红旗, 高广军. 270 km·h-1高速列车气动力性能研究[J]. 中国铁道科学, 2003, 24(2): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200302003.htm

    TIAN Hong-qi, GAO Guang-jun. The analysis and evaluation on the aerodynamic behavior of 270 km·h-1 high-speed train[J]. China Railway Science, 2003, 24(2): 14-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200302003.htm
    [32] 苗秀娟, 高广军. 基于DES的车辆横风气动性能模拟[J]. 中南大学学报(自然科学版), 2012, 43(7): 2855-2860. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207058.htm

    MIAO Xiu-juan, GAO Guang-jun. Aerodynamic performance of train under cross-wind based on DES[J]. Journal of Central South University (Science and Technology), 2012, 43(7): 2855-2860. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207058.htm
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  114
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回