Numerical simulation of bearing capacity of carbody for high-speed train subjected to longitudinal impact
-
摘要: 进行了高速列车车体6005A-T6、6082A-T6铝合金的静态拉伸和动态压缩试验,识别了0.001~2 500 s-1应变率范围内2种铝合金的材料应变率效应,建立了对应的Johnson-Cook本构模型;构建了高速列车典型车辆的显式动力分析模型,完成了刚性墙冲击车体过程仿真,研究了车钩稳态载荷、冲击速度、加载方式对车体承载极限的影响;分析了高速列车一号车和二号车车体在冲击载荷下的变形演化,通过应力变化临界点确定了车体的承载极限,并对列车在更高能量配置模式下的车体承载性能进行了验证。研究结果表明:在0.001~2 500 s-1应变率范围内,6005A-T6和6082A-T6铝合金应变率敏感系数分别为2.9×10-3和8.5×10-3,应变率效应不明显;纵向动态冲击载荷下,应变率强化对铝合金车体结构承载力影响不明显,惯性效应是其承载能力高于静态极限的主要原因;纵向冲击载荷从车钩位置传递时,一号车和二号车车体的动态承载力水平显著高于车体许用静态压缩载荷;冲击载荷下的车体结构承载力可为高速列车碰撞各界面能量分布问题中吸能元件平台力取值提供上界;可适当考虑提高车体许用压缩载荷以扩大列车端部吸能部件力学参数设计域,以满足更苛刻需求下的列车被动安全性能。Abstract: The static tension and dynamic compression experiments of the aluminum alloy 6005A-T6 and 6082A-T6 used in the carbody of high-speed train were carried out, their strain rate effects within the strain rate range of 0.001-2 500 s-1 were identified, and the corresponding Johnson-Cook constitutive model was established. An explicit dynamic analysis model for the typical vehicle of high-speed train was constructed, the process of the carbody impacted by a rigid wall was simulated, and the influence of coupler stable force, impact speed, and loading condition on the bearing capacity of the carbody was investigated. The deformation evolution of the carbodies 1 and 2 for the high-speed train subjected to the impact load was analyzed, the bearing capacity of the carbody was determined by finding the critical point of stress change, and the crashworthiness of the train configured with a higher energy mode was analyzed for the performance verification. Research results indicate that the strain rate sensitivity coefficients of the 6005A-T6 and 6082A-T6 aluminum alloys are 2.9×10-3and 8.5×10-3 within the strain rate range of 0.001-2 500 s-1, respectively, so their strain rate effects are not obvious. Under the axial dynamic impact load, the strengthening effect of the strain rate has no obvious effect on the bearing capacity of the aluminum alloy carbody structure, and the inertial effect is the main reason that its bearing capacity is higher than the static limit. When the longitudinal impact load is transmitted at the coupler position, the dynamic bearing capacity limitations of the carbodies 1 and 2 are obviously higher than the maximum allowable value under the static compression. The bearing capacity of the carbody structure under the impact load can provide an upper bound for the platform force of the energy absorbing element used in the interfacial energy distribution problem of the high-speed train collision. It is recommended to enlarge the mechanical parameters' design domains of the energy absorbing components by appropriately increasing the allowable load, meeting the passive safety performance of the train considering more severe requirements. 1 tab, 22 figs, 31 refs.
-
表 1 JC本构参数
Table 1. Parameters of JC constitutive model
材料 A/MPa B/MPa n C 6005A-T6 264 313 0.553 0.002 9 6082A-T6 293 322 0.642 0.008 5 -
[1] GAO Guang-jun, WANG Shuai. Crashworthiness of passenger rail vehicles: a review[J]. International Journal of Crashworthiness, 2019, 24(6): 664-676. doi: 10.1080/13588265.2018.1511233 [2] PENG Yong, HOU Lin, CHE Quan-wei, et al. Multi-objective robust optimization design of a front-end underframe structure for a high-speed train[J]. Engineering Optimization, 2019, 51(5): 753-774. doi: 10.1080/0305215X.2018.1495719 [3] LU Zhai-jun, LI Ben-huai, YANG Cheng-xing, et al. Numerical and experimental study on the design strategy of a new collapse zone structure for railway vehicles[J]. International Journal of Crashworthiness, 2017, 22(5): 488-502. doi: 10.1080/13588265.2017.1281080 [4] DING Zhao-yang, ZHENG Zhi-jun, YU Ji-lin. A wave propagation model of distributed energy absorption system for trains[J]. International Journal of Crashworthiness, 2019, 24(5): 508-522. doi: 10.1080/13588265.2018.1479482 [5] YU Yao, GAO Guang-jun, GUAN Wei-yuan, et al. Scale similitude rules with acceleration consistency for trains collision[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(10): 2466-2480. doi: 10.1177/0954409718773562 [6] QIN Rui-xian, CHEN Bing-zhi. Optimization design on functionally graded CEM for trains based on LPM model with calibrated parameters[J]. Shock and Vibration, 2020, 2020: 8884865. [7] YAO Shu-guang, YAN Kai-bo, LU Si-si, et al. Energy-absorption optimisation of locomotives and scaled equivalent model validation[J]. International Journal of Crashworthiness, 2017, 22(4): 441-452. doi: 10.1080/13588265.2016.1276118 [8] 张秧聪, 许平, 彭勇, 等. 高速列车前端多胞吸能结构的耐撞性优化[J]. 振动与冲击, 2017, 36(12): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201712006.htmZHANG Yang-cong, XU Ping, PENG Yong, et al. Crashworthiness optimization of high-speed train front multi-cell energy-absorbing structures[J]. Journal of Vibration and Shock, 2017, 36(12): 31-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201712006.htm [9] XU Ping, LU Si-si, YAN Kai-bo, et al. Energy absorption design study of subway vehicles based on a scaled equivalent model test[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(1): 3-15. doi: 10.1177/0954409718777371 [10] STUART B, 阎锋. 整列车碰撞动态特性与提高列车防碰撞性总结报告[J]. 国外铁道车辆, 2017, 54(5): 1-7. doi: 10.3969/j.issn.1002-7610.2017.05.001STUART B, YAN Feng. Summary report on dynamic behavior of the whole train in collisions and the improvement of the crashworthiness[J]. Foreign Rolling Stock, 2017, 54(5): 1-7. (in Chinese) doi: 10.3969/j.issn.1002-7610.2017.05.001 [11] 田红旗. 客运列车耐冲击吸能车体设计方法[J]. 交通运输工程学报, 2001, 1(1): 110-114. doi: 10.3321/j.issn:1671-1637.2001.01.028TIAN Hong-qi. Crashworthy energy absorbing car-body design method for passenger train[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 110-114. (in Chinese) doi: 10.3321/j.issn:1671-1637.2001.01.028 [12] UJITA Y. Evaluation of strength of end structures in intermediate rolling stock of a train during train collision accidents[J]. Quarterly Report of RTRI, 2014, 55(1): 14-19. doi: 10.2219/rtriqr.55.14 [13] 王卉子, 李欣伟, 范乐天, 等. 新型高速动车组车体纵向承载能力分析[J]. 大连交通大学学报, 2013, 34(5): 29-32. doi: 10.3969/j.issn.1673-9590.2013.05.007WANG Hui-zi, LI Xin-wei, FAN Le-tian, et al. Discussion of lengthway load carrying capacity of new type high speed train unit[J]. Journal of Dalian Jiaotong University, 2013, 34(5): 29-32. (in Chinese) doi: 10.3969/j.issn.1673-9590.2013.05.007 [14] CAROLAN M, PERLMAN B, TYRELL D. Crippling test of a Budd pioneer passenger car[C]//American Society of Mechanical Engineers. Proceedings of the ASME/ASCE/IEEE 2012 Joint Rail Conference. New York: American Society of Mechanical Engineers, 2012: 225-235. [15] LLANA P, JACOBSEN K, STRINGFELLOW R. Locomotive crash energy management coupling tests evaluation and vehicle-to-vehicle test preparation[C]//American Society of Mechanical Engineers. Proceedings of the ASME/ASCE/IEEE 2019 Joint Rail Conference. New York: American Society of Mechanical Engineers, 2019: JRC2019-1259. [16] LLANA P, JACOBSEN K, STRINGFELLOW R. Locomotive crash energy management vehicle-to-vehicle impact test results[C]//American Society of Mechanical Engineers. Proceedings of the ASME/ASCE/IEEE 2020 Joint Rail Conference. New York: American Society of Mechanical Engineers, 2020: JRC2020-8030. [17] CAROLAN M, PERLMAN B, TYRELL D, et al. Crippling test of a Budd M-1 passenger railcar: test and analysis results[C]// American Society of Mechanical Engineers. Proceedings of the ASME/ASCE/IEEE 2014 Joint Rail Conference. New York: American Society of Mechanical Engineers, 2014: 336-246. [18] CAROLAN M, MUHLANGER M, PERLMAN B, et al. Occupied volume integrity testing: elastic test results and analyses[C]//American Society of Mechanical Engineers. Proceedings of ASME 2011 Rail Transportation Division Fall Technical Conference. New York: American Society of Mechanical Engineers, 2011: RTDF2011-67010. [19] LLANA P, JACOBSEN K, TYRELL D. Conventional Locomotive Coupling Tests[C]//American Society of Mechanical Engineers. Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition. New York: American Society of Mechanical Engineers, 2016: IMECE2016-67236. [20] UJITA Y, 周贤全. 列车碰撞事故中中间车辆端部结构强度的评估[J]. 国外铁道车辆, 2016, 53(1): 41-45. doi: 10.3969/j.issn.1002-7610.2016.01.009UJITA Y, ZHOU Xian-quan. Evaluation of the strength of the end structures in intermediate rolling stock of a train during collision accidents[J]. Foreign Rolling Stock, 2016, 53(1): 41-45. (in Chinese) doi: 10.3969/j.issn.1002-7610.2016.01.009 [21] 早势刚, 彭惠民. 列车碰撞安全性研究[J]. 国外铁道机车与动车, 2017(2): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ201702013.htmHAYASHI Gang, PENG Hui-min. Research on the safety of train collision[J]. Foreign Railway Locomotive and Motor Car, 2017(2): 44-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ201702013.htm [22] 川崎健, 蔡千华. 铁道车辆用铝合金吸能结构的准静态压缩试验及其数值分析[J]. 国外铁道车辆, 2009, 46(3): 24-29. doi: 10.3969/j.issn.1002-7610.2009.03.007KAWASAKI K, CAI Qian-hua. Numerical analysis and quasi-static compression test on energy absorption[J]. Foreign Railway Vehicle, 2009, 46(3): 24-29. (in Chinese) doi: 10.3969/j.issn.1002-7610.2009.03.007 [23] 唐愉真. 地铁车辆端梁主承载结构动态极限承载能力研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.TANG Yu-zhen. Study on dynamic ultimate bearing capacity of metro vehicle end beam main bearing structure[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese) [24] 严成, 欧卓成, 段卓平, 等. 脆性材料动态强度应变率效应[J]. 爆炸与冲击, 2011, 31(4): 423-427. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201104017.htmYAN Cheng, OU Zhuo-cheng, DUAN Zhuo-ping, et al. Strain-rate effects on dynamic strength of brittle materials[J]. Explosion and Shock Waves, 2011, 31(4): 423-427. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201104017.htm [25] 彭一波, 王罡, 潘尚峰, 等. 考虑动态回复过程的6005A铝合金动态力学模型[J]. 机械工程学报, 2014, 50(10): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201410006.htmPENG Yi-bo, WANG Gang, PAN Shang-feng, et al. 6005A aluminum dynamic mechanical model considering the dynamic recovery process[J]. Journal of Mechanical Engineering, 2014, 50(10): 32-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201410006.htm [26] BÖRVIK T, CLAUSEN A H, ERIKSSON M, et al. Experimental and numerical study on the perforation of AA6005-T6 panels[J]. International Journal of Impact Engineering, 2005, 32(1): 35-64. [27] OOSTERKAMP L D, IVANKOVIC A, VENIZELOS G. High strain rate properties of selected aluminium alloys[J]. Materials Science and Engineering A, 2000, 278(1): 225-235. [28] PENG Yong, CHEN Xuan-zhen, PENG Shan, et al. Strain rate dependent constitutive and low stress triaxiality fracture behavior investigation of 6005 Al alloy[J]. Advances in Materials Science and Engineering, 2018, 2018: 2712937. [29] CHEN Xuan-zhen, PENG Yong, PENG Shan, et al. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities[J]. PLoS One, 2017, 12(7): e0181983. doi: 10.1371/journal.pone.0181983 [30] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21: 541-548. [31] 黄西成, 胡文军. Johnson-Cook本构参数的确定方法[C]//爆炸力学学会实验技术专业组. 第六届全国爆炸力学实验技术学术会议论文集. 长沙: 爆炸力学学会实验技术专业组, 2010: 308-315.HUANG Xi-cheng, HU Wen-jun. Determining method for parameters of Johnson-Cook constitutive model[C]//Experimental Technical Professional Group of Institute of Explosive Mechanics. Proceedings of 6th National Conference on Experimental Technology of Explosive Mechanics. Changsha: Experimental Technical Professional Group of Institute of Explosive Mechanics, 2010: 308-315. (in Chinese)