留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纵向冲击下高速列车车体承载极限数值模拟

秦睿贤 高峰 王铁成 陈秉智

秦睿贤, 高峰, 王铁成, 陈秉智. 纵向冲击下高速列车车体承载极限数值模拟[J]. 交通运输工程学报, 2021, 21(6): 209-224. doi: 10.19818/j.cnki.1671-1637.2021.06.016
引用本文: 秦睿贤, 高峰, 王铁成, 陈秉智. 纵向冲击下高速列车车体承载极限数值模拟[J]. 交通运输工程学报, 2021, 21(6): 209-224. doi: 10.19818/j.cnki.1671-1637.2021.06.016
QIN Rui-xian, GAO Feng, WANG Tie-cheng, CHEN Bing-zhi. Numerical simulation of bearing capacity of carbody for high-speed train subjected to longitudinal impact[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 209-224. doi: 10.19818/j.cnki.1671-1637.2021.06.016
Citation: QIN Rui-xian, GAO Feng, WANG Tie-cheng, CHEN Bing-zhi. Numerical simulation of bearing capacity of carbody for high-speed train subjected to longitudinal impact[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 209-224. doi: 10.19818/j.cnki.1671-1637.2021.06.016

纵向冲击下高速列车车体承载极限数值模拟

doi: 10.19818/j.cnki.1671-1637.2021.06.016
基金项目: 

国家重点研发计划 2016YFB1200504-A-05

中国国家铁路集团有限公司科技研究开发计划 N2020J027

辽宁省高等学校创新团队支持计划 LT2016010

详细信息
    作者简介:

    秦睿贤(1989-),男,甘肃金昌人,大连交通大学讲师,工学博士,从事轨道装备被动安全研究

    通讯作者:

    陈秉智(1971-),男,浙江宁波人,大连交通大学教授,工学博士

  • 中图分类号: U270.4

Numerical simulation of bearing capacity of carbody for high-speed train subjected to longitudinal impact

Funds: 

National Key Research and Development Program of China 2016YFB1200504-A-05

Science and Technology Research and Development Plan of China State Railway Group Co., Ltd N2020J027

Innovation Team Program for Higher Education of Liaoning Province LT2016010

More Information
  • 摘要: 进行了高速列车车体6005A-T6、6082A-T6铝合金的静态拉伸和动态压缩试验,识别了0.001~2 500 s-1应变率范围内2种铝合金的材料应变率效应,建立了对应的Johnson-Cook本构模型;构建了高速列车典型车辆的显式动力分析模型,完成了刚性墙冲击车体过程仿真,研究了车钩稳态载荷、冲击速度、加载方式对车体承载极限的影响;分析了高速列车一号车和二号车车体在冲击载荷下的变形演化,通过应力变化临界点确定了车体的承载极限,并对列车在更高能量配置模式下的车体承载性能进行了验证。研究结果表明:在0.001~2 500 s-1应变率范围内,6005A-T6和6082A-T6铝合金应变率敏感系数分别为2.9×10-3和8.5×10-3,应变率效应不明显;纵向动态冲击载荷下,应变率强化对铝合金车体结构承载力影响不明显,惯性效应是其承载能力高于静态极限的主要原因;纵向冲击载荷从车钩位置传递时,一号车和二号车车体的动态承载力水平显著高于车体许用静态压缩载荷;冲击载荷下的车体结构承载力可为高速列车碰撞各界面能量分布问题中吸能元件平台力取值提供上界;可适当考虑提高车体许用压缩载荷以扩大列车端部吸能部件力学参数设计域,以满足更苛刻需求下的列车被动安全性能。

     

  • 图  1  试件几何尺寸

    Figure  1.  Specimen geometrical sizes

    图  2  应力应变曲线

    Figure  2.  Stress-strain curves

    图  3  不同应变率下材料应力-应变曲线

    Figure  3.  Stress-strain curves of materials at different strain rates

    图  4  车体有限元模型

    Figure  4.  Finite element models of carbodies

    图  5  车钩平台力2 000 kN下Tc车体有效应力分布

    Figure  5.  Effective stress distributions of carbody Tc under coupler platform force of 2 000 kN

    图  6  车钩平台力2 500 kN下Tc车体有效应力分布

    Figure  6.  Effective stress distributions of carbody Tc under coupler platform force of 2 500 kN

    图  7  车钩平台力3 000 kN下Tc车体有效应力分布

    Figure  7.  Effective stress distributions of carbody Tc under coupler platform force of 3 000 kN

    图  8  车钩平台力2 000 kN下M车体有效应力分布

    Figure  8.  Effective stress distributions of carbody M under coupler platform force of 2 000 kN

    图  9  车钩平台力2 250 kN下M车体有效应力分布

    Figure  9.  Effective stress distributions of carbody M under coupler platform force of 2 250 kN

    图  10  车钩平台力2 500 kN下M车体有效应力分布

    Figure  10.  Effective stress distributions of carbody M under coupler platform force of 2 500 kN

    图  11  不同车钩力下Tc车体冲击力时程曲线与关键点应力分布

    Figure  11.  Time history curves of impact force and stress distributions at key points of carbody Tc under different coupler forces

    图  12  不同车钩力下Tc车体冲击力时程曲线与关键点应力分布

    Figure  12.  Time history curves of impact force and stress distributions at key points of carbody Tc under different coupler force

    图  13  36 km·h-1冲击速度下车体形变序列

    Figure  13.  Deformation sequence of carbody at impact speed of 36 km·h-1

    图  14  45 km·h-1冲击速度下车体形变序列

    Figure  14.  Deformation sequence of carbody at impact speed of 45 km·h-1

    图  15  54 km·h-1冲击速度下车体形变序列

    Figure  15.  Deformation sequence of carbody at impact speed of 54 km·h-1

    图  16  不同冲击速度下车体的冲击力载荷区间与应力分布

    Figure  16.  Impact force intervals of carbody and corresponding stress distributions at different impact speeds

    图  17  不同加载方式下车体应力变化

    Figure  17.  Stress evolution of carbody under different loading methods

    图  18  不同加载方式下车体的冲击力载荷区间与应力分布

    Figure  18.  Impact force intervals of carbody and corresponding stress distributions under different impact modes

    图  19  列车对撞有限元模型

    Figure  19.  Finite element model of train collision

    图  20  不同能量模式下各个界面冲击力对比

    Figure  20.  Impact force comparison of each interface under different energy modes

    图  21  不同能量模式下变形对比

    Figure  21.  Deformation comparison under different energy modes

    图  22  不同能量模式下减速度对比

    Figure  22.  Deceleration comparison under different energy modes

    表  1  JC本构参数

    Table  1.   Parameters of JC constitutive model

    材料 A/MPa B/MPa n C
    6005A-T6 264 313 0.553 0.002 9
    6082A-T6 293 322 0.642 0.008 5
    下载: 导出CSV
  • [1] GAO Guang-jun, WANG Shuai. Crashworthiness of passenger rail vehicles: a review[J]. International Journal of Crashworthiness, 2019, 24(6): 664-676. doi: 10.1080/13588265.2018.1511233
    [2] PENG Yong, HOU Lin, CHE Quan-wei, et al. Multi-objective robust optimization design of a front-end underframe structure for a high-speed train[J]. Engineering Optimization, 2019, 51(5): 753-774. doi: 10.1080/0305215X.2018.1495719
    [3] LU Zhai-jun, LI Ben-huai, YANG Cheng-xing, et al. Numerical and experimental study on the design strategy of a new collapse zone structure for railway vehicles[J]. International Journal of Crashworthiness, 2017, 22(5): 488-502. doi: 10.1080/13588265.2017.1281080
    [4] DING Zhao-yang, ZHENG Zhi-jun, YU Ji-lin. A wave propagation model of distributed energy absorption system for trains[J]. International Journal of Crashworthiness, 2019, 24(5): 508-522. doi: 10.1080/13588265.2018.1479482
    [5] YU Yao, GAO Guang-jun, GUAN Wei-yuan, et al. Scale similitude rules with acceleration consistency for trains collision[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(10): 2466-2480. doi: 10.1177/0954409718773562
    [6] QIN Rui-xian, CHEN Bing-zhi. Optimization design on functionally graded CEM for trains based on LPM model with calibrated parameters[J]. Shock and Vibration, 2020, 2020: 8884865.
    [7] YAO Shu-guang, YAN Kai-bo, LU Si-si, et al. Energy-absorption optimisation of locomotives and scaled equivalent model validation[J]. International Journal of Crashworthiness, 2017, 22(4): 441-452. doi: 10.1080/13588265.2016.1276118
    [8] 张秧聪, 许平, 彭勇, 等. 高速列车前端多胞吸能结构的耐撞性优化[J]. 振动与冲击, 2017, 36(12): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201712006.htm

    ZHANG Yang-cong, XU Ping, PENG Yong, et al. Crashworthiness optimization of high-speed train front multi-cell energy-absorbing structures[J]. Journal of Vibration and Shock, 2017, 36(12): 31-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201712006.htm
    [9] XU Ping, LU Si-si, YAN Kai-bo, et al. Energy absorption design study of subway vehicles based on a scaled equivalent model test[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(1): 3-15. doi: 10.1177/0954409718777371
    [10] STUART B, 阎锋. 整列车碰撞动态特性与提高列车防碰撞性总结报告[J]. 国外铁道车辆, 2017, 54(5): 1-7. doi: 10.3969/j.issn.1002-7610.2017.05.001

    STUART B, YAN Feng. Summary report on dynamic behavior of the whole train in collisions and the improvement of the crashworthiness[J]. Foreign Rolling Stock, 2017, 54(5): 1-7. (in Chinese) doi: 10.3969/j.issn.1002-7610.2017.05.001
    [11] 田红旗. 客运列车耐冲击吸能车体设计方法[J]. 交通运输工程学报, 2001, 1(1): 110-114. doi: 10.3321/j.issn:1671-1637.2001.01.028

    TIAN Hong-qi. Crashworthy energy absorbing car-body design method for passenger train[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 110-114. (in Chinese) doi: 10.3321/j.issn:1671-1637.2001.01.028
    [12] UJITA Y. Evaluation of strength of end structures in intermediate rolling stock of a train during train collision accidents[J]. Quarterly Report of RTRI, 2014, 55(1): 14-19. doi: 10.2219/rtriqr.55.14
    [13] 王卉子, 李欣伟, 范乐天, 等. 新型高速动车组车体纵向承载能力分析[J]. 大连交通大学学报, 2013, 34(5): 29-32. doi: 10.3969/j.issn.1673-9590.2013.05.007

    WANG Hui-zi, LI Xin-wei, FAN Le-tian, et al. Discussion of lengthway load carrying capacity of new type high speed train unit[J]. Journal of Dalian Jiaotong University, 2013, 34(5): 29-32. (in Chinese) doi: 10.3969/j.issn.1673-9590.2013.05.007
    [14] CAROLAN M, PERLMAN B, TYRELL D. Crippling test of a Budd pioneer passenger car[C]//American Society of Mechanical Engineers. Proceedings of the ASME/ASCE/IEEE 2012 Joint Rail Conference. New York: American Society of Mechanical Engineers, 2012: 225-235.
    [15] LLANA P, JACOBSEN K, STRINGFELLOW R. Locomotive crash energy management coupling tests evaluation and vehicle-to-vehicle test preparation[C]//American Society of Mechanical Engineers. Proceedings of the ASME/ASCE/IEEE 2019 Joint Rail Conference. New York: American Society of Mechanical Engineers, 2019: JRC2019-1259.
    [16] LLANA P, JACOBSEN K, STRINGFELLOW R. Locomotive crash energy management vehicle-to-vehicle impact test results[C]//American Society of Mechanical Engineers. Proceedings of the ASME/ASCE/IEEE 2020 Joint Rail Conference. New York: American Society of Mechanical Engineers, 2020: JRC2020-8030.
    [17] CAROLAN M, PERLMAN B, TYRELL D, et al. Crippling test of a Budd M-1 passenger railcar: test and analysis results[C]// American Society of Mechanical Engineers. Proceedings of the ASME/ASCE/IEEE 2014 Joint Rail Conference. New York: American Society of Mechanical Engineers, 2014: 336-246.
    [18] CAROLAN M, MUHLANGER M, PERLMAN B, et al. Occupied volume integrity testing: elastic test results and analyses[C]//American Society of Mechanical Engineers. Proceedings of ASME 2011 Rail Transportation Division Fall Technical Conference. New York: American Society of Mechanical Engineers, 2011: RTDF2011-67010.
    [19] LLANA P, JACOBSEN K, TYRELL D. Conventional Locomotive Coupling Tests[C]//American Society of Mechanical Engineers. Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition. New York: American Society of Mechanical Engineers, 2016: IMECE2016-67236.
    [20] UJITA Y, 周贤全. 列车碰撞事故中中间车辆端部结构强度的评估[J]. 国外铁道车辆, 2016, 53(1): 41-45. doi: 10.3969/j.issn.1002-7610.2016.01.009

    UJITA Y, ZHOU Xian-quan. Evaluation of the strength of the end structures in intermediate rolling stock of a train during collision accidents[J]. Foreign Rolling Stock, 2016, 53(1): 41-45. (in Chinese) doi: 10.3969/j.issn.1002-7610.2016.01.009
    [21] 早势刚, 彭惠民. 列车碰撞安全性研究[J]. 国外铁道机车与动车, 2017(2): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ201702013.htm

    HAYASHI Gang, PENG Hui-min. Research on the safety of train collision[J]. Foreign Railway Locomotive and Motor Car, 2017(2): 44-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ201702013.htm
    [22] 川崎健, 蔡千华. 铁道车辆用铝合金吸能结构的准静态压缩试验及其数值分析[J]. 国外铁道车辆, 2009, 46(3): 24-29. doi: 10.3969/j.issn.1002-7610.2009.03.007

    KAWASAKI K, CAI Qian-hua. Numerical analysis and quasi-static compression test on energy absorption[J]. Foreign Railway Vehicle, 2009, 46(3): 24-29. (in Chinese) doi: 10.3969/j.issn.1002-7610.2009.03.007
    [23] 唐愉真. 地铁车辆端梁主承载结构动态极限承载能力研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    TANG Yu-zhen. Study on dynamic ultimate bearing capacity of metro vehicle end beam main bearing structure[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
    [24] 严成, 欧卓成, 段卓平, 等. 脆性材料动态强度应变率效应[J]. 爆炸与冲击, 2011, 31(4): 423-427. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201104017.htm

    YAN Cheng, OU Zhuo-cheng, DUAN Zhuo-ping, et al. Strain-rate effects on dynamic strength of brittle materials[J]. Explosion and Shock Waves, 2011, 31(4): 423-427. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201104017.htm
    [25] 彭一波, 王罡, 潘尚峰, 等. 考虑动态回复过程的6005A铝合金动态力学模型[J]. 机械工程学报, 2014, 50(10): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201410006.htm

    PENG Yi-bo, WANG Gang, PAN Shang-feng, et al. 6005A aluminum dynamic mechanical model considering the dynamic recovery process[J]. Journal of Mechanical Engineering, 2014, 50(10): 32-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201410006.htm
    [26] BÖRVIK T, CLAUSEN A H, ERIKSSON M, et al. Experimental and numerical study on the perforation of AA6005-T6 panels[J]. International Journal of Impact Engineering, 2005, 32(1): 35-64.
    [27] OOSTERKAMP L D, IVANKOVIC A, VENIZELOS G. High strain rate properties of selected aluminium alloys[J]. Materials Science and Engineering A, 2000, 278(1): 225-235.
    [28] PENG Yong, CHEN Xuan-zhen, PENG Shan, et al. Strain rate dependent constitutive and low stress triaxiality fracture behavior investigation of 6005 Al alloy[J]. Advances in Materials Science and Engineering, 2018, 2018: 2712937.
    [29] CHEN Xuan-zhen, PENG Yong, PENG Shan, et al. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities[J]. PLoS One, 2017, 12(7): e0181983. doi: 10.1371/journal.pone.0181983
    [30] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21: 541-548.
    [31] 黄西成, 胡文军. Johnson-Cook本构参数的确定方法[C]//爆炸力学学会实验技术专业组. 第六届全国爆炸力学实验技术学术会议论文集. 长沙: 爆炸力学学会实验技术专业组, 2010: 308-315.

    HUANG Xi-cheng, HU Wen-jun. Determining method for parameters of Johnson-Cook constitutive model[C]//Experimental Technical Professional Group of Institute of Explosive Mechanics. Proceedings of 6th National Conference on Experimental Technology of Explosive Mechanics. Changsha: Experimental Technical Professional Group of Institute of Explosive Mechanics, 2010: 308-315. (in Chinese)
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  724
  • HTML全文浏览量:  368
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-05
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回