留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TQWT和稀疏表示的滚动轴承故障诊断方法

牛一捷 李花 邓武 费继友 孙亚丽 刘芝博

牛一捷, 李花, 邓武, 费继友, 孙亚丽, 刘芝博. 基于TQWT和稀疏表示的滚动轴承故障诊断方法[J]. 交通运输工程学报, 2021, 21(6): 237-246. doi: 10.19818/j.cnki.1671-1637.2021.06.018
引用本文: 牛一捷, 李花, 邓武, 费继友, 孙亚丽, 刘芝博. 基于TQWT和稀疏表示的滚动轴承故障诊断方法[J]. 交通运输工程学报, 2021, 21(6): 237-246. doi: 10.19818/j.cnki.1671-1637.2021.06.018
NIU Yi-jie, LI Hua, DENG Wu, FEI Ji-you, SUN Ya-li, LIU Zhi-bo. Rolling bearing fault diagnosis method based on TQWT and sparse representation[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 237-246. doi: 10.19818/j.cnki.1671-1637.2021.06.018
Citation: NIU Yi-jie, LI Hua, DENG Wu, FEI Ji-you, SUN Ya-li, LIU Zhi-bo. Rolling bearing fault diagnosis method based on TQWT and sparse representation[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 237-246. doi: 10.19818/j.cnki.1671-1637.2021.06.018

基于TQWT和稀疏表示的滚动轴承故障诊断方法

doi: 10.19818/j.cnki.1671-1637.2021.06.018
基金项目: 

国家自然科学基金项目 62001079

国家自然科学基金项目 51605068

国家科技支撑计划 2015BAF20B02

辽宁省教育厅科学研究经费项目 LJKZ0481

详细信息
    作者简介:

    牛一捷(1978-),女,辽宁大连人,大连交通大学讲师,工学博士研究生,从事智能故障诊断研究

    费继友(1964-),男,吉林松原人,大连交通大学教授,工学博士

    通讯作者:

    邓武(1976-),男,四川安岳人,中国民航大学教授,工学博士

  • 中图分类号: U270.1

Rolling bearing fault diagnosis method based on TQWT and sparse representation

Funds: 

National Natural Science Foundation of China 62001079

National Natural Science Foundation of China 51605068

National Key Technology Research and Development Program 2015BAF20B02

Scientific Research Funds of Education Department of Liaoning Province LJKZ0481

More Information
  • 摘要: 基于稀疏表示理论,提出了一种采用可调品质因子小波变换(TQWT)的滚动轴承故障诊断新方法,分析了包含早期故障成分的原始采集振动信号的特点和早期故障信号的特性,研究了稀疏表示模型在解决故障特征提取问题和故障类型识别问题的应用;运用TQWT将原始信号转换为一组子带小波系数集,研究了利用迭代收缩阈值算法提取出稀疏小波系数的有效性和谱峭度对故障冲击信号敏感的特性,通过计算各子带信号分量的谱峭度,选取包含故障信息明显的子带小波系数,建立了包含稀疏故障信号分量的故障特征提取方法;利用提取出的故障信号稀疏表示分类模型,实现了基于稀疏表示的滚动轴承故障诊断方法。试验结果表明:在凯斯西储数据集上,提出的故障特征提取方法在剔除干扰成分方面有显著效果,提出方法对于4种类型数据的平均诊断准确率为99.83%,对于10种类型数据的平均诊断准确率为97.73%;与只运用TQWT和迭代收缩阈值算法进行故障特征提取的方法相比,故障诊断精度提高了11.60%,算法运行时间减小8%;在QPZZ-Ⅱ旋转机械平台采集到的振动数据集上,提出的方法对于4种类型数据的平均诊断准确率为100%;与传统小波去噪方法相比,准确率提高了35.67%,算法运行时间减小了7.25%。可见,本文提出的方法可以有效解决滚动轴承故障诊断问题。

     

  • 图  1  2层TQWT分解与重构过程

    Figure  1.  Decomposition and reconstruction process of two-layer TQWT

    图  2  算法流程

    Figure  2.  Algorithm flow

    图  3  轴承试验装置

    Figure  3.  Bearing experimental device

    图  4  外圈故障振动信号包络谱

    Figure  4.  Envelope spectra of outer ring fault vibration signal

    图  5  内圈故障振动信号包络谱

    Figure  5.  Envelope spectra of inner ring fault vibration signal

    图  6  滚动体故障振动信号包络谱

    Figure  6.  Envelope spectra of rolling element fault vibration signal

    图  7  QPZZ-Ⅱ试验平台

    Figure  7.  QPZZ-Ⅱ experiment platform

    表  1  第1组试验数据类型

    Table  1.   First group experimental data types

    故障类型 故障尺寸/mm 电机转速/(r·min-1) 标签
    无故障 0 1 797 1
    滚动体故障 0.177 8 2
    内圈故障 3
    外圈故障 4
    下载: 导出CSV

    表  2  第2组试验数据类型

    Table  2.   Second group experimental data types

    故障类型 故障尺寸/mm 电机转速/(r·min-1) 标签
    无故障 0 1 797 1
    内圈故障 0.177 8 1 797 2
    内圈故障 1 772 3
    内圈故障 1 750 4
    外圈故障 1 797 5
    外圈故障 1 772 6
    外圈故障 1 750 7
    滚动体故障 1 797 8
    滚动体故障 1 772 9
    滚动体故障 1 750 10
    下载: 导出CSV

    表  3  故障信号经TQWT后各子带谱峭度

    Table  3.   Kurtosis value of each subband of fault vibration signal after TQWT transformation

    子带 1 2 3 4 5 6 7 8 9 10 11
    正常信号谱峭度 8.41 22.34 18.77 3.65 6.77 64.74 5.92 2.98 4.33 14.52 3.88
    滚动体故障信号谱峭度 12.24 3.31 7.89 48.06 26.97 8.67 9.69 22.89 23.37 8.75 5.06
    内圈故障信号普峭度 20.71 7.95 10.05 19.06 30.02 13.02 6.85 12.95 58.92 6.49 5.10
    外圈故障信号普峭度 38.48 7.07 4.28 10.13 58.20 13.26 12.40 21.65 30.39 12.72 6.61
    下载: 导出CSV

    表  4  故障识别结果

    Table  4.   Fault identification results

    试验次数 1 2 3 4 5 6 7 8 9 10 10次试验平均值
    平均分类准确率/% 100.00 100.00 99.72 99.44 100.00 99.72 99.72 100.00 100.00 99.72 99.83
    正常数据分类准确率/% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
    滚动体分类准确率/% 100.00 100.00 98.89 97.78 100.00 98.89 98.89 100.00 100.00 98.89 99.33
    内圈分类准确率/% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
    外圈分类准确率/% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
    下载: 导出CSV

    表  5  五种方法故障识别结果对比

    Table  5.   Comparison of fault identification results for five kinds of methods

    方法 准确率/% 运行时间/s 准确率标准偏差/%
    1 95.30 0.81 1.02
    2 95.75 0.75 1.36
    3 97.47 0.70 0.84
    4 98.28 0.62 0.79
    5 99.83 0.68 0.18
    下载: 导出CSV

    表  6  三种方法故障识别结果对比

    Table  6.   Comparison of fault identification results for three kinds of methods

    方法 准确率/% 运行时间/s 准确率标准偏差/%
    1 86.13 4.03 1.48
    4 86.38 3.86 0.77
    5 97.73 3.68 0.73
    下载: 导出CSV

    表  7  两种方法故障识别结果对比

    Table  7.   Comparison of fault identification results for two kinds of methods

    方法 准确率/% 运行时间/s 准确率标准偏差/%
    4 64.33 0.69 2.57
    5 100.00 0.64 0.00
    下载: 导出CSV
  • [1] NANDI S, TOLIYAT H A, LI X. Condition monitoring and fault diagnosis of electrical motors—a review[J]. IEEE Transactions on Energy Conversion, 2005, 20(4): 719-729. doi: 10.1109/TEC.2005.847955
    [2] 王国彪, 何正嘉, 陈雪峰, 等. 机械故障诊断基础研究"何去何从"[J]. 机械工程学报, 2013, 49(1): 63-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201301010.htm

    WANG Guo-biao, HE Zheng-jia, CHEN Xue-feng, et al. Basic research on machinery fault diagnosis—what is the prescription[J]. Journal of Mechanical Engineering, 2013, 49(1): 63-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201301010.htm
    [3] 沈长青, 王旭, 王冬, 等. 基于多尺度卷积类内迁移学习的列车轴承故障诊断[J]. 交通运输工程学报, 2020, 20(5): 151-164. doi: 10.19818/j.cnki.1671-1637.2020.05.012

    SHEN Chang-qing, WANG Xu, WANG Dong, et al. Multi-scale convolution intra-class transfer learning for train bearing fault diagnosis[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 151-164. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.012
    [4] 马小骏, 任淑红, 左洪福, 等. 基于LS-SVM算法和性能可靠性的航空发动机在翼寿命预测方法[J]. 交通运输工程学报, 2015, 15(3): 92-100. doi: 10.3969/j.issn.1671-1637.2015.03.013

    MA Xiao-jun, REN Shu-hong, ZUO Hong-fu, et al. Prediction method of aero-engine life on wing based on LS-SVM algorithm and performance reliability[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 92-100. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.03.013
    [5] KLEIN R, INGMAN D, BRAUN S. Non-stationary signals: phase-energy approach—theory and simulations[J]. Mechanical Systems and Signal Processing, 2001, 15(6): 1061-1089. doi: 10.1006/mssp.2001.1398
    [6] FENG Zhi-peng, LIANG Ming, CHU Fu-lei. Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples[J]. Mechanical Systems and Signal Processing, 2013, 38(1): 165-205. doi: 10.1016/j.ymssp.2013.01.017
    [7] ANTONI J. Cyclostationarity by examples[J]. Mechanical Systems and Signal Processing, 2009, 23(4): 987-1036. doi: 10.1016/j.ymssp.2008.10.010
    [8] LEI Ya-guo, HE Zheng-jia, ZI Yan-yang. Application of the EEMD method to rotor fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2009, 23(4): 1327-1338. doi: 10.1016/j.ymssp.2008.11.005
    [9] 李奕璠, 刘建新, 林建辉, 等. 基于自适应多尺度形态学分析的车轮扁疤故障诊断方法[J]. 交通运输工程学报, 2015, 15(1): 58-65. doi: 10.3969/j.issn.1671-1637.2015.01.008

    LI Yi-fan, LIU Jian-xin, LIN Jian-hui, et al. Fault diagnosis method of railway vehicle with wheel flat based on self-adaptive multi-scale morphology analysis[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 58-65. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.01.008
    [10] YAN R Q, GAO R X, CHEN X F. Wavelets for fault diagnosis of rotary machines: a review with applications[J]. Signal Processing, 2014, 96: 1-15. doi: 10.1016/j.sigpro.2013.04.015
    [11] 张志禹, 吕延军, 张九龙, 等. 航空发动机转子碰摩故障瞬时频率诊断方法[J]. 交通运输工程学报, 2007, 7(4): 21-23. doi: 10.3321/j.issn:1671-1637.2007.04.005

    ZHANG Zhi-yu, LYU Yan-jun, ZHANG Jiu-long, et al. Diagnosis method of instantaneous frequency for rotor impact-rub fault of aeroengine[J]. Journal of Traffic and Transportation Engineering, 2007, 7(4): 21-23. (in Chinese) doi: 10.3321/j.issn:1671-1637.2007.04.005
    [12] SELESNICK I W. Wavelet transform with tunable Q-factor[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3560-3575. doi: 10.1109/TSP.2011.2143711
    [13] LIU Ruo-nan, YANG Bo-yuan, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery: a review[J]. Mechanical Systems and Signal Processing, 2018, 108: 33-47. doi: 10.1016/j.ymssp.2018.02.016
    [14] ZHANG Shen, ZHANG Shi-bo, WANG Bin-guan, et al. Deep learning algorithms for bearing fault diagnostics—a comprehensive review[J]. IEEE Access, 2020, 8: 29857-29881. doi: 10.1109/ACCESS.2020.2972859
    [15] 高倩, 陈晓英, 孙丽颖. 基于稀疏表示的TQWT在低频振荡信号去噪中应用[J]. 电力系统保护与控制, 2016, 44(13): 55-60. doi: 10.7667/PSPC151358

    GAO Qian, CHEN Xiao-ying, SUN Li-ying. Low frequency oscillating signals denoising based on TQWT via sparse representation[J]. Power System Protection and Control, 2016, 44(13): 55-60. (in Chinese) doi: 10.7667/PSPC151358
    [16] 王霄, 谢平, 郭源耕, 等. 基于多字典-共振稀疏分解的脉冲故障特征提取[J]. 中国机械工程, 2019, 30(20): 2456-2462, 2472. doi: 10.3969/j.issn.1004-132X.2019.20.008

    WANG Xiao, XIE Ping, GUO Yuan-geng, et al. Impulse fault signature extraction based on multi-dictionary resonance-based sparse signal decomposition[J]. China Mechanical Engineering, 2019, 30(20): 2456-2462, 2472. (in Chinese) doi: 10.3969/j.issn.1004-132X.2019.20.008
    [17] CAI Gai-gai, CHEN Xue-feng, HE Zheng-jia. Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox[J]. Mechanical Systems and Signal Processing, 2013, 41(1/2): 34-53.
    [18] ZHAO Zhi-bin, WANG Shi-bin, AN Bo-tao, et al. Hierarchical hyper- laplacian prior for weak fault feature enhancement[J]. ISA Transactions, 2020, 96: 429-443. doi: 10.1016/j.isatra.2019.06.007
    [19] 赵见龙, 张永超, 王立夫, 等. 基于共振稀疏分解与谱峭度的滚动轴承故障诊断[J]. 组合机床与自动化加工技术, 2019(4): 111-115. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC201904027.htm

    ZHAO Jian-long, ZHANG Yong-chao, WANG Li-fu, et al. Rolling bearing fault diagnosis based on resonance sparse decomposition and spectral kurtosis[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2019(4): 111-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC201904027.htm
    [20] 孔运, 王天杨, 褚福磊. 自适应TQWT滤波器算法及其在冲击特征提取中的应用[J]. 振动与冲击, 2019, 38(11): 9-16, 23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201911003.htm

    KONG Yun, WANG Tian-yang, CHU Fu-lei. Adaptive TQWT filter algorithm and its application in impact feature extraction[J]. Journal of Vibration and Shock, 2019, 38 (11): 9-16, 23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201911003.htm
    [21] LI Jun-lin, WANG Hua-qing, SONG Liu-yang, et al. A novel feature extraction method for roller bearing using sparse decomposition based on self-adaptive complete dictionary[J]. Measurement, 2019, 148: 106934. doi: 10.1016/j.measurement.2019.106934
    [22] FENG Z P, ZHOU Y K, ZUO M J, et al. Atomic decomposition and sparse representation for complex signal analysis in machinery fault diagnosis: a review with examples[J]. Measurement, 2017, 103: 106-132. doi: 10.1016/j.measurement.2017.02.031
    [23] 王宏超, 陈进, 董广明, 等. 可调品质因子小波变换在转子早期碰摩故障诊断中应用[J]. 振动与冲击, 2014, 33(10): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201410015.htm

    WANG Hong-chao, CHEN Jin, DONG Guang-ming, et al. Early rub-impact diagnosis of rotors based on tunable Q-factor wavelet transformation[J]. Journal of Vibration and Shock, 2014, 33(10): 77-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201410015.htm
    [24] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. doi: 10.1137/080716542
    [25] 何正嘉, 訾艳阳, 陈雪峰, 等. 内积变换原理与机械故障诊断[J]. 振动工程学报, 2007, 20(5): 528-533. doi: 10.3969/j.issn.1004-4523.2007.05.019

    HE Zheng-jia, ZI Yan-yang, CHEN Xue-feng, et al. Transform principle of inner product for fault diagnosis[J]. Journal of Vibration Engineering, 2007, 20(5): 528-533. (in Chinese) doi: 10.3969/j.issn.1004-4523.2007.05.019
    [26] 苏文胜, 王奉涛, 张志新, 等. EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J]. 振动与冲击, 2010, 29(3): 18-21. doi: 10.3969/j.issn.1000-3835.2010.03.005

    SU Wen-sheng, WANG Feng-tao, ZHANG Zhi-xin, et al. Application of EMD denoising and spectral kurtosis in early fault diagnosis of rolling element bearings[J]. Journal of Vibration and Shock, 2010, 29(3): 18-21. (in Chinese) doi: 10.3969/j.issn.1000-3835.2010.03.005
    [27] ANTONI J. The spectral kurtosis: a useful tool for characterising non-stationary signals[J]. Mechanical Systems and Signal Processing, 2006, 20(2): 282-307. doi: 10.1016/j.ymssp.2004.09.001
    [28] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. doi: 10.1109/TPAMI.2008.79
    [29] LI Yong-bo, WANG Xian-zhi, SI Shu-bin, et al. Entropy based fault classification using the case western reserve university data: a benchmark study[J]. IEEE Transactions on Reliability, 2020, 69(2): 754-767. doi: 10.1109/TR.2019.2896240
    [30] SU W S, WANG F T, ZHU H, et al. Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement[J]. Mechanical Systems and Signal Processing, 2010, 24(5): 1458-1472. doi: 10.1016/j.ymssp.2009.11.011
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  668
  • HTML全文浏览量:  198
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-18
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回