留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C80型铁路货车制动装置运用性能预测

卢碧红 徐超 郭宏远

卢碧红, 徐超, 郭宏远. C80型铁路货车制动装置运用性能预测[J]. 交通运输工程学报, 2021, 21(6): 289-297. doi: 10.19818/j.cnki.1671-1637.2021.06.023
引用本文: 卢碧红, 徐超, 郭宏远. C80型铁路货车制动装置运用性能预测[J]. 交通运输工程学报, 2021, 21(6): 289-297. doi: 10.19818/j.cnki.1671-1637.2021.06.023
LU Bi-hong, XU Chao, GUO Hong-yuan. Operation performance prediction of C80 railway freight car braking device[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 289-297. doi: 10.19818/j.cnki.1671-1637.2021.06.023
Citation: LU Bi-hong, XU Chao, GUO Hong-yuan. Operation performance prediction of C80 railway freight car braking device[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 289-297. doi: 10.19818/j.cnki.1671-1637.2021.06.023

C80型铁路货车制动装置运用性能预测

doi: 10.19818/j.cnki.1671-1637.2021.06.023
基金项目: 

国家自然科学基金项目 51875073

辽宁省教育厅科学技术研究项目 JDL2017036

详细信息
    作者简介:

    卢碧红(1961-),女,四川合江人,大连交通大学教授,工学博士,从事质量工程与车辆性能改善研究

  • 中图分类号: U270.1

Operation performance prediction of C80 railway freight car braking device

Funds: 

National Natural Science Foundation of China 51875073

Science and Technology Research Project of Education Department of Liaoning Province JDL2017036

More Information
  • 摘要: 运用现场试验与多体动力学仿真相结合的方式,提出一套反映C80单元制动装置真实接触状态的建模与模型验证方法;运用RecurDyn仿真分析平台,通过仿真试验分析法对制动装置的运用性能进行分析预测。研究结果表明:闸瓦靠近轮缘一侧的接触应力较大,2、3位闸瓦下部应力较大,易引起闸瓦偏磨;制动梁立柱连接处存在较大应力,游动、固定杠杆连接部位最大瞬时接触应力分别为137和127 MPa;C80单元制动装置中12号和15号销轴受力最大,在空车与重车制动时销轴所受合力分别超过10和50 kN,现场检修时应着重检查游动杠杆、中拉杆、固定杠杆、制动梁立柱和立式制动杠杆及其连接部;动态运行时,制动梁朝着车辆运行反向窜动导致闸瓦与车轮异常间歇性碰撞接触,且随着运行速度增大轮瓦接触力有增大趋势,易导致车轮非正常磨耗和闸瓦偏磨。研究方法为预测铁路货车制动装置等复杂机构的运行规律与性能预测提供一种新技术,可用于指导C80等铁路货车制动装置的运用检修规程制定与设计改善。

     

  • 图  1  C80单元制动装置

    Figure  1.  C80 unit braking device

    图  2  现场试验制动缸压强

    Figure  2.  Braking cylinder pressures in field test

    图  3  制动装置建模流程

    Figure  3.  Modelling flow for braking device

    图  4  制动装置仿真模型

    Figure  4.  Simulation model of braking device

    图  5  制动缸压力曲线

    Figure  5.  Force curves of braking cylinder

    图  6  单元制动装置刚柔耦合模型

    Figure  6.  Rigid-flexible coupling model of unit braking device

    图  7  空车制动闸瓦应力分布

    Figure  7.  Stress distributions of brake-shoes for empty car

    图  8  重车制动闸瓦应力分布

    Figure  8.  Stress distributions of brake-shoes for heavy car

    图  9  各杠杆应力分布

    Figure  9.  Stress distributions of each lever

    图  10  制动装置销轴编号

    Figure  10.  Numbering of braking device pin shafts

    图  11  各销轴所受合力

    Figure  11.  Resultant forces of each pin shaft

    图  12  闸瓦与车轮异常接触

    Figure  12.  Abnormal contact between brake-shoe and wheel

    图  13  闸瓦压力与车轮角速度曲线

    Figure  13.  Curves of brake-shoe force and wheel angular velocity

    表  1  现场试验闸瓦压力

    Table  1.   Brake-shoe forces in field test kN

    工况 闸瓦压力
    1位 2位 3位 4位
    空车 4.70 4.90 4.90 4.80
    重车 19.75 20.05 19.90 19.65
    下载: 导出CSV

    表  2  仿真试验闸瓦压力

    Table  2.   Brake-shoe forces in simulation test kN

    工况 闸瓦压力
    1位 2位 3位 4位
    空车 4.70 5.10 5.00 4.80
    重车 19.30 20.00 20.40 19.90
    下载: 导出CSV
  • [1] 苗晓雨. 铁路货车发展方向研究[J]. 中国铁路, 2018(12): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201812019.htm

    MIAO Xiao-yu. Study on the development orientation of railway freight car[J]. Chinese Railways, 2018(12): 90-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201812019.htm
    [2] 刘云祥. 铁路货车基础制动装置故障引起抱闸的原因分析及检修控制建议[J]. 铁道车辆, 2018, 56(8): 41-43. doi: 10.3969/j.issn.1002-7602.2018.08.017

    LIU Yun-xiang. Analysis of causes to brake seizure due to failure of foundation brake device on railway freight cars as well as the suggestions on inspection and repair control[J]. Rolling Stock, 2018, 56(8): 41-43. (in Chinese) doi: 10.3969/j.issn.1002-7602.2018.08.017
    [3] 白正方. 货车轮缘异常磨耗原因分析及建议[J]. 铁路技术创新, 2019(2): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TJCX201902019.htm

    BAI Zheng-fang. Cause analysis and suggestions for abnormal wear of freight car flange[J]. Railway Technical Innovation, 2019(2): 92-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJCX201902019.htm
    [4] 孙可心, 卢碧红, 朱建宁, 等. 铁路货车闸瓦上下偏磨机理研究[J]. 大连交通大学学报, 2018, 39(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201801015.htm

    SUN Ke-xin, LU Bi-hong, ZHU Jian-ning, et al. Mechanism study of eccentric wear of brake shoe upper and lower end in railway wagon[J]. Journal of Dalian Jiaotong University, 2018, 39(1): 56-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201801015.htm
    [5] QU Bao-zhang, ZHANG Hong-bo, LU Bi-hong, et al. Research on brake shoe eccentric wear mechanism by analytical method and virtual experiment[J]. Key Engineering Materials, 2014, 620: 318-323. doi: 10.4028/www.scientific.net/KEM.620.318
    [6] LU Bi-hong, ZHANG Yu, QU Bao-zhang, et al. Research on RecurDyn based simulation method for the brake shoe eccentric wear in railway freight cars[J]. Key Engineering Materials, 2012, 522: 467-471. doi: 10.4028/www.scientific.net/KEM.522.467
    [7] LU Bi-hong, CHEN Xiao-yuan, QU Bao-zhang, et al. Research on wheel-shoe wear for high friction composite brake shoes based foundation brake rigging in railway wagon[J]. Key Engineering Materials, 2016, 667: 530-535.
    [8] 冯文梅, 张养亮. 转向架基础制动装置故障探讨[J]. 铁道车辆, 2009, 47(1): 34-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200901015.htm

    FENG Wen-mei, ZHANG Yang-liang. Discussion of troubles of foundation brake riggings in bogies[J]. Rolling Stock, 2009, 47(1): 34-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200901015.htm
    [9] 孙家锋, 刘振明, 陆正涛. 铁路货车转向架基础制动装置技术分析[J]. 铁道机车车辆, 2018, 38(3): 62-65. doi: 10.3969/j.issn.1008-7842.2018.03.15

    SUN Jia-feng, LIU Zhen-ming, LU Zheng-tao. Technical analysis of bogie brake rigging for railway freight cars[J]. Railway Locomotive and Car, 2018, 38(3): 62-65. (in Chinese) doi: 10.3969/j.issn.1008-7842.2018.03.15
    [10] GVNAY M, KORKMAZ M E, ÖZMEN R. An investigation on braking systems used in railway vehicles[J]. Engineering Science and Technology, 2020, 23(2): 421-431.
    [11] 刘振明. 货车基础制动装置对车轮磨耗的影响[J]. 铁道机车车辆, 2011, 31(6): 23-29. doi: 10.3969/j.issn.1008-7842.2011.06.007

    LIU Zhen-ming. Influence of freight car bogie brake rigging on wheel wear[J]. Railway Locomotive and Car, 2011, 31(6): 23-29. (in Chinese) doi: 10.3969/j.issn.1008-7842.2011.06.007
    [12] LI Zhao-xiang, XU Chao, ZHU Jian-ning, et al. Multi-factor and multi-object optimization for foundation brake device in railway freight car[C]//IEEE. IEEE Robotics and Automation Magazine. New York: IEEE, 2019: 7-11.
    [13] 韩朝建, 曲宝章, 孙可心, 等. 基于DOE/RecurDyn铁路货车基础制动装置缓解性能优化[J]. 大连交通大学学报, 2019, 40(5): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201905011.htm

    HAN Chao-jian, QU Bao-zhang, SUN Ke-xin, et al. Release performance optimization for foundation brake rigging in railway wagon based on DOE/RecurDyn[J]. Journal of Dalian Jiaotong University, 2019, 40(5): 55-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201905011.htm
    [14] 刘俊清, 于科华. 大秦线C80型敞车转K6型转向架车轮轮缘单侧磨耗原因分析及改进措施[J]. 铁道车辆, 2006, 44(11): 38-39. doi: 10.3969/j.issn.1002-7602.2006.11.013

    LIU Jun-qing, YU Ke-hua. Analysis of causes to single-side wear of Zhuan K6 bogie wheel flange for C80 gondola cars on Daqin Line and measures for improvement[J]. Rolling Stock, 2006, 44(11): 38-39. (in Chinese) doi: 10.3969/j.issn.1002-7602.2006.11.013
    [15] 侯正国. C80型敞车常见故障的处理及改进建议[J]. 铁道车辆, 2012, 50(11): 43. doi: 10.3969/j.issn.1002-7602.2012.11.014

    HOU Zheng-guo. Treatment of common failures of C80 gondola car and suggestions for improvement[J]. Rolling Stock, 2012, 50(11): 43. (in Chinese) doi: 10.3969/j.issn.1002-7602.2012.11.014
    [16] 黄光宇. C80型铝合金重载敞车运用情况分析及建议[J]. 中国铁路, 2018(4): 39-48. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201804008.htm

    HUANG Guang-yu. Analysis of its service conditions and suggestions on the C80 aluminum alloy open wagon for heavy haul purpose[J]. Chinese Railways, 2018(4): 39-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201804008.htm
    [17] 李培. C80型敞车轮对车轮磨耗调查及建议[J]. 哈尔滨铁道科技, 2014(4): 26-27, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-HBTD201404011.htm

    LI Pei. Investigation and suggestion on wheel wear of C80 gondola car[J]. Harbin Railway Science and Technology, 2014(4): 26-27, 33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBTD201404011.htm
    [18] 胡海滨, 吕可维, 邵文东, 等. 大秦铁路货车车轮磨耗问题的调查与研究[J]. 铁道学报, 2010, 32(1): 30-37. doi: 10.3969/j.issn.1001-8360.2010.01.006

    HU Hai-bin, LYU Ke-wei, SHAO Wen-dong, et al. Research on wheel wear of freight cars on Datong-Qinhuangdao Railway Line[J]. Journal of the China Railway Society, 2010, 32(1): 30-37. (in Chinese) doi: 10.3969/j.issn.1001-8360.2010.01.006
    [19] 张宇. 大秦线C80型敞车常见故障调查分析[J]. 科技视界, 2017(1): 182, 164. https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201701129.htm

    ZHANG Yu. Investigation and analysis of common failures of C80 gondola cars on Daqin Line[J]. Science and Technology Vision, 2017(1): 182, 164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201701129.htm
    [20] 解喜文. 大秦线C80型敞车闸瓦切削车轮的故障分析及解决建议[J]. 科技视界, 2017(23): 97-99. doi: 10.3969/j.issn.2095-2457.2017.23.042

    XIE Xi-wen. Fault analysis and suggestions for cutting wheel of C80 open-type brake shaft[J]. Science and Technology Vision, 2017(23): 97-99. (in Chinese) doi: 10.3969/j.issn.2095-2457.2017.23.042
    [21] 肖八励, 林结良, 李志强, 等. 铁路货车车轮偏磨和制动梁缓解不良的原因初探[J]. 铁道机车车辆, 2017, 37(2): 97-100. doi: 10.3969/j.issn.1008-7842.2017.02.21

    XIAO Ba-li, LIN Jie-liang, LI Zhi-qiang, et al. Reason investigation to the wheel eccentric wear and brake beam release problem of freight train[J]. Railway Locomotive and Car, 2017, 37(2): 97-100. (in Chinese) doi: 10.3969/j.issn.1008-7842.2017.02.21
    [22] 徐超, 朱建宁, 李照祥, 等. C80型铁路货车制动装置性能预测[J]. 大连交通大学学报, 2019, 40(4): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201904013.htm

    XU Chao, ZHU Jian-ning, LI Zhao-xiang, et al. Performance prediction of brake device for C80 railway wagon[J]. Journal of Dalian Jiaotong University, 2019, 40(4): 63-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201904013.htm
    [23] BRUNI S, MEIJAARD J P, RILL G, et al. State-of-the-art and challenges of railway and road vehicle dynamics with multibody dynamics approaches[J]. Multibody System Dynamics, 2020, 49(1): 1-32.
    [24] IWNICKI S D, STICHEL S, ORLOVA A, et al. Dynamics of railway freight vehicles[J]. Vehicle System Dynamics, 2015, 53(7): 995-1033. doi: 10.1080/00423114.2015.1037773
    [25] GAO G J, CHEN W, ZHANG J, et al. Analysis of longitudinal forces of coupler devices in emergency braking process for heavy haul trains[J]. Journal of Central South University, 2017, 24(10): 2449-2457. doi: 10.1007/s11771-017-3656-9
    [26] 王惠. 重载列车制动系统与纵向动力学研究[D]. 长沙: 中南大学, 2012.

    WANG Hui. Research on braking system and longitudinal dynamics of heavy haul train[D]. Changsha: Central South University, 2012. (in Chinese)
    [27] SHARMA S K, KUMAR A. Impact of longitudinal train dynamics on train operations: a simulation-based study[J]. Journal of Vibration Engineering and Technologies, 2018, 6(3): 197-203. doi: 10.1007/s42417-018-0033-4
    [28] ALTURBEH H, STOW J, TUCKER G, et al. Modelling and simulation of the train brake system in low adhesion conditions[J]. Proceedings of the Institution of Mechanical Engineers, 2020, 234(3): 1-29.
    [29] WU Q, COLE C, SPIRYAGIN M. Train braking simulation with wheel-rail adhesion model[J]. Vehicle System Dynamics, 2020, 58(8): 1226-1241. doi: 10.1080/00423114.2019.1645342
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  276
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回