留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于柔性多体动力学的地铁车辆半主动控制

陈兆玮 朱国

陈兆玮, 朱国. 基于柔性多体动力学的地铁车辆半主动控制[J]. 交通运输工程学报, 2021, 21(6): 298-309. doi: 10.19818/j.cnki.1671-1637.2021.06.024
引用本文: 陈兆玮, 朱国. 基于柔性多体动力学的地铁车辆半主动控制[J]. 交通运输工程学报, 2021, 21(6): 298-309. doi: 10.19818/j.cnki.1671-1637.2021.06.024
CHEN Zhao-wei, ZHU Guo. Semi-active control of metro vehicle based on flexible multi-body dynamics[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 298-309. doi: 10.19818/j.cnki.1671-1637.2021.06.024
Citation: CHEN Zhao-wei, ZHU Guo. Semi-active control of metro vehicle based on flexible multi-body dynamics[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 298-309. doi: 10.19818/j.cnki.1671-1637.2021.06.024

基于柔性多体动力学的地铁车辆半主动控制

doi: 10.19818/j.cnki.1671-1637.2021.06.024
基金项目: 

国家自然科学基金项目 52008067

中国博士后科学基金项目 2019M650236

重庆市基础研究与前沿探索项目 cstc2018jcyjAX0271

省部共建山区桥梁及隧道工程国家重点实验室开放基金项目 SKLBT-19-002

详细信息
    作者简介:

    陈兆玮(1988-),男,河南濮阳人,重庆交通大学副教授,工学博士,从事列车-轨道-桥梁系统动力学研究

    通讯作者:

    朱国(1995-),男,四川资阳人,重庆交通大学硕士研究生

  • 中图分类号: U270

Semi-active control of metro vehicle based on flexible multi-body dynamics

Funds: 

National Natural Science Foundation of China 52008067

China Postdoctoral Science Foundation 2019M650236

Basic Natural Science and Frontier Technology Research Program of Chongqing cstc2018jcyjAX0271

Open Funding of State Key Laboratory of Mountain Bridge and Tunnel Engineering SKLBT-19-002

More Information
  • 摘要: 为了对地铁车辆的运行性能实现更准确的评估和更有效的优化,借助有限元理论和子结构理论建立了车体和转向架构架等关键零部件的柔性动力学模型;基于天棚半主动控制算法和柔性多体动力学理论,建立了考虑半主动控制悬挂的地铁车辆刚柔耦合动力学模型;考虑轨道随机不平顺的影响,研究了半主动控制悬挂以及结构柔性对地铁车辆运行稳定性和乘坐舒适性的影响。研究结果表明:相对于传统的悬挂装置,天棚半主动控制极大降低了车辆的振动加速度,并使其变化趋势更加平缓,对车辆的低频振动有明显的抑制作用;采用本文的研究参数,天棚半主动控制在直线段可使车辆的垂向Sperling指标和垂向振动加速度均方根(RMS)分别降低26.8%和7.5%,使车体横向Sperling指标和横向振动加速度RMS分别降低8.8%和4.9%,而在曲线段,天棚半主动控制可使车辆垂向Sperling指标和垂向振动加速度RMS分别降低25.1%和5.7%,使横向Sperling指标和横向振动加速度RMS分别降低15.6%和8.3%,车辆的乘坐舒适性和运行稳定性大幅提升;考虑结构柔性时,车辆的垂向Sperling指标和垂向振动加速度RMS相比于未考虑结构柔性时分别增大了4.3%和6.8%,横向Sperling指标和横向振动加速度RMS分别增大了3.0%和3.4%。可见,车体和构架的结构柔性对车辆的动态特性有较大影响,在对车辆运行稳定性和乘坐舒适性进行计算和评估时不可忽略。

     

  • 图  1  研究方法流程

    Figure  1.  Flow of research method

    图  2  天棚控制原理

    Figure  2.  Principle of skyhook control

    图  3  车体有限元模型

    Figure  3.  Finite element model of car body

    图  4  直线段振动加速度

    Figure  4.  Vibration accelerations on straight segment

    图  5  直线段垂向振动加速度功率谱

    Figure  5.  Power spectra of vertical vibration accelerations on straight segment

    图  6  直线段横向振动加速度功率谱

    Figure  6.  Power spectra of lateral vibration accelerations on straight segment

    图  7  直线段垂向Sperling指标和RMS曲线

    Figure  7.  Curves of vertical Sperling indexes and RMSs on straight segment

    图  8  直线段横向Sperling指标和RMS曲线

    Figure  8.  Curves of lateral Sperling indexes and RMSs on straight segment

    图  9  曲线段振动加速度

    Figure  9.  Vibration accelerations on curve segment

    图  10  曲线段车体垂向振动加速度功率谱

    Figure  10.  Power spectra of vertical vibration accelerations on curve segment

    图  11  曲线段车体横向振动加速度功率谱

    Figure  11.  Power spectra of lateral vibration acceleration on curve segment

    图  12  曲线段垂向Sperling指标和RMS曲线

    Figure  12.  Curves of vertical Sperling indexes and RMSs on curve segment

    图  13  曲线段横向Sperling指标和RMS曲线

    Figure  13.  Curves of lateral Sperling indexes and RMSs on curve segment

    图  14  悬挂对直线段振动加速度的影响

    Figure  14.  Influences of suspension on vibration accelerations on straight segment

    图  15  不同悬挂下直线段垂向振动加速度功率谱

    Figure  15.  Power spectra of vertical vibration accelerations on straight segment with different suspensions

    图  16  不同悬挂下直线段横向振动加速度功率谱

    Figure  16.  Power spectra of lateral vibration accelerations on straight segment with different suspensions

    图  17  不同悬挂下直线段Sperling指标和RMS曲线

    Figure  17.  Curves of Sperling indexes and RMSs on straight segment with different suspensions

    图  18  悬挂对曲线段振动加速度的影响

    Figure  18.  Influences of suspensions on vibration accelerations on straight segment

    图  19  不同悬挂下曲线段垂向振动加速度功率谱

    Figure  19.  Power spectra of vertical vibration accelerations on curve segment with different suspensions

    图  20  不同悬挂下曲线段横向振动加速度功率谱

    Figure  20.  Power spectra of lateral vibration accelerations on curve segment with different suspensions

    图  21  不同悬挂下曲线段Sperling指标和RMS曲线

    Figure  21.  Curves of Sperling indexes and RMSs on curve segment with different suspensions

    表  1  车体振型与频率

    Table  1.   Vibration modes and frequencies of car body

    阶数 频率/Hz 描述
    1 4.96 侧墙一阶弯曲
    2 6.19 车顶一阶弯曲
    3 7.37 菱形变形
    4 8.69 一阶垂向弯曲
    5 13.27 侧墙二阶弯曲
    6 14.16 车顶二阶弯曲
    7 14.34 车体一阶扭转
    8 17.06 端墙内凹
    下载: 导出CSV

    表  2  计算工况

    Table  2.   Calculation conditions

    工况 线路 模型 悬挂
    直线 曲线 刚体 刚柔耦合 被动 半主动
    1
    2
    3
    4
    5
    6
    下载: 导出CSV

    表  3  轨道参数

    Table  3.   Parameters of track

    参数 数值
    钢轨横截面积/m2 7.745×10-3
    钢轨弹性模量/MPa 2.1×10-5
    钢轨惯性力矩/m4 3.214×10-5
    扣件间距/m 0.6
    扣件刚度/(MN·m-1) 30
    扣件阻尼/(kN·s·m-1) 10
    轨道类型 整体道床轨道
    曲线半径/m 800
    曲线段长度/m 100
    过渡曲线长度/m 50
    超高/m 0.095
    下载: 导出CSV

    表  4  地铁车辆动力学参数

    Table  4.   Dynamics parameters of metro vehicle

    参数 数值
    轮对质量/t 1.878
    构架质量/t 4.007
    车体质量/t 35.443
    轮对绕xyz轴的惯量/(t·m2) 1.055、0.139、1.055
    构架绕xyz轴的惯量/(t·m2) 1.194、0.876、2.099
    车体绕xyz轴的惯量/(t·m2) 50.929、1 410.960、1 401.490
    一系纵、横、垂向刚度/(MN·m-1) 7.0、4.0、0.9
    一系纵、横、垂向阻尼/(kN·s·m-1) 10、10、10
    二系纵、横、垂向刚度/(kN·m-1) 220.1、220.1、341.9
    二系纵、横、垂向阻尼/(kN·s·m-1) 60、60、80
    车轮名义滚动圆半径/m 0.42
    车轮踏面型式 LM踏面
    下载: 导出CSV

    表  5  天棚控制参数

    Table  5.   Parameters of skyhook control kN·s·m-1

    参数 横向 垂向
    Cmin 20.58 28.00
    Cmax 102.90 140.00
    Cs 58.80 80.00
    下载: 导出CSV
  • [1] 丁问司, 卜继玲, 刘友梅. 我国高速列车横向半主动悬挂系统控制策略及控制方式[J]. 中国铁道科学, 2002, 23(4): 1-7. doi: 10.3321/j.issn:1001-4632.2002.04.001

    DING Wen-si, BU Ji-ling, LIU You-mei. Strategy and method of high-speed train suspension's lateral semi-active control in China[J]. China Railway Science, 2002, 23(4): 1-7. (in Chinese) doi: 10.3321/j.issn:1001-4632.2002.04.001
    [2] 孙国春, 史文库, 田彦涛. 振动主动控制技术的研究与发展[J]. 机床与液压, 2004(3): 1-6. doi: 10.3969/j.issn.1001-3881.2004.03.001

    SUN Guo-chun, SHI Wen-ku, TIAN Yan-tao. Research and development in active vibration control technology[J]. Machine Tool and Hydraulics, 2004(3): 1-6. (in Chinese) doi: 10.3969/j.issn.1001-3881.2004.03.001
    [3] 胡海岩, 郭大蕾, 翁建生. 振动半主动控制技术的进展[J]. 振动、测试与诊断, 2001, 21(4): 235-244. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS200104000.htm

    HU Hai-yan, GUO Da-lei, WENG Jian-sheng. Recent advances in semi-active control of vibration[J]. Journal of Vibration, Measurement and Diagnosis, 2001, 21(4): 235-244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS200104000.htm
    [4] 王月明, 曾京. 车辆横向半主动悬挂的神经网络自适应控制[J]. 铁道学报, 2002, 24(4): 34-37. doi: 10.3321/j.issn:1001-8360.2002.04.007

    WANG Yue-ming, ZENG Jing. Adaptive control of semi-active lateral suspension of vehicle using neural network[J]. Journal of the China Railway Society, 2002, 24(4): 34-37. (in Chinese) doi: 10.3321/j.issn:1001-8360.2002.04.007
    [5] ESCALONA J L, SUGIYAMA H, SHABANA A A. Modelling of structural flexiblity in multibody railroad vehicle systems[J]. Vehicle System Dynamics, 2013, 51(7): 1027-1058. (in Chinese) doi: 10.1080/00423114.2013.786835
    [6] 洪嘉振, 蒋丽忠. 柔性多体系统刚-柔耦合动力学[J]. 力学进展, 2000, 30(1): 15-20. doi: 10.3321/j.issn:1000-0992.2000.01.003

    HONG Jia-zhen, JIANG Li-zhong. Flexible multibody dynamics with coupled rigid and deformation motions[J]. Advances in Mechanics, 2000, 30(1): 15-20. (in Chinese) doi: 10.3321/j.issn:1000-0992.2000.01.003
    [7] 何万龙, 任伟新, 吴建基. 柔性梁上高速移动质量动力响应分析[J]. 振动与冲击, 1998, 17(1): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ199801017.htm

    HE Wan-long, REN Wei-xin, WU Jian-ji. Dynamic response analysis of flexible beam with a high speed moving mass[J]. Journal of Vibration and Shock, 1998, 17(1): 67-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ199801017.htm
    [8] DIANA G, CHELI F, COLLINA A, et al. The development of a numerical model for railway vehicles comfort assessment through comparison with experimental measurements[J]. Vehicle System Dynamics, 2002, 38(3): 165-183. doi: 10.1076/vesd.38.3.165.8287
    [9] CHEN Zhao-wei, FANG Hui. An alternative solution of train-track dynamic interaction[J]. Shock and Vibration, 2019, DOI: 10.1155/2019/1859261.
    [10] NETTER H, SCHUPP G, RULKA W, et al. New aspects of contact modelling and validation within multibody system simulation of railway vehicles[J]. Vehicle System Dynamics, 1998, 29(S1): 246-269.
    [11] 程海涛, 王成国, 钱立新. 考虑车体柔性的货车动力学仿真[J]. 铁道学报, 2000, 22(6): 40-45. doi: 10.3321/j.issn:1001-8360.2000.06.009

    CHENG Hai-tao, WANG Cheng-guo, QIAN Li-xin. Dynamics simulation of freight car considering the car body's flexible property[J]. Journal of the China Railway Society, 2000, 22(6): 40-45. (in Chinese) doi: 10.3321/j.issn:1001-8360.2000.06.009
    [12] 张波, 罗光兵, 蒋忠城, 等. 柔性结构对车辆运动稳定性的影响[J]. 技术与市场, 2019, 26(6): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYS201906008.htm

    ZHANG Bo, LUO Guang-bing, JIANG Zhong-cheng, et al. The influence of flexible structure on vehicle dynamic stability[J]. Technology and Market, 2019, 26(6): 5-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYS201906008.htm
    [13] 丁问司, 卜继玲. 铁道车辆横向开关半主动悬架系统研究[J]. 机械工程学报, 2004, 40(9): 161-164, 170. doi: 10.3321/j.issn:0577-6686.2004.09.034

    DING Wen-si, BU Ji-ling. Research on lateral on-off semi-active suspensions of railway vehicle[J]. Chinese Journal of Mechanical Engineering, 2004, 40(9): 161-164, 170. (in Chinese) doi: 10.3321/j.issn:0577-6686.2004.09.034
    [14] 陆正刚, 郭慧明. 柔性车辆振动和运行平稳性控制研究[J]. 中国机械工程, 2006, 17(10): 1026-1031. doi: 10.3321/j.issn:1004-132X.2006.10.010

    LU Zheng-gang, GUO Hui-ming. Flexible vehicle vibration active control and ride quality improvement[J]. China Mechanical Engineering, 2006, 17(10): 1026-1031. (in Chinese) doi: 10.3321/j.issn:1004-132X.2006.10.010
    [15] 陆正刚, 胡用生. 基于磁流变阻尼器的铁道车辆结构振动半主动控制[J]. 机械工程学报, 2006, 42(8): 95-100. doi: 10.3321/j.issn:0577-6686.2006.08.016

    LU Zheng-gang, HU Yong-sheng. Semi-active control of railway vehicle structure vibration based on MR damper[J]. Chinese Journal of Mechanical Engineering, 2006, 42(8): 95-100. (in Chinese) doi: 10.3321/j.issn:0577-6686.2006.08.016
    [16] 董孝卿, 王悦明, 文彬. 铁道车辆横向半主动悬挂系统仿真[J]. 中国铁道科学, 2005, 26(2): 84-89. doi: 10.3321/j.issn:1001-4632.2005.02.018

    DONG Xiao-qing, WANG Yue-ming, WEN Bin. Simulation of the lateral semi-active suspension system of railway vehicle[J]. China Railway Science, 2005, 26(2): 84-89. (in Chinese) doi: 10.3321/j.issn:1001-4632.2005.02.018
    [17] 杨建伟, 黄强. 基于模糊控制的高速车辆横向半主动悬挂仿真[J]. 系统仿真学报, 2006, 18(12): 3542-3546. doi: 10.3969/j.issn.1004-731X.2006.12.054

    YANG Jian-wei, HUANG Qiang. Simulation of lateral semi-active suspension for high-speed railway vehicle based on fuzzy control[J]. Journal of System Simulation, 2006, 18(12): 3542-3546. (in Chinese) doi: 10.3969/j.issn.1004-731X.2006.12.054
    [18] VALÁŠEK M, NOVÁK M, ŠIKA Z, et al. Extended ground-hook—new concept of semi-active control of truck's suspension[J]. Vehicle System Dynamics, 1997, 27(5/6): 289-303.
    [19] 郭孔辉, 隋记魁, 郭耀华. 基于天棚和地棚混合阻尼的高速车辆横向减振器半主动控制[J]. 振动与冲击, 2013, 32(2): 18-23. doi: 10.3969/j.issn.1000-3835.2013.02.005

    GUO Kong-hui, SUI Ji-kui, GUO Yao-hua. Semi-active control method for a high-speed railway vehicle lateral damper based on skyhook and groundhook hybrid damping[J]. Journal of Vibration and Shock, 2013, 32(2): 18-23. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.02.005
    [20] KARNOPP D. Active damping in road vehicle suspension systems[J]. Vehicle System Dynamics, 1983, 12(6): 291-311. doi: 10.1080/00423118308968758
    [21] KARNOPP D, CROSBY M J, HARWOOD R A. Vibration control using semi-active force generators[J]. Journal of Engineering for Industry, 1974, 96(2): 619-626. doi: 10.1115/1.3438373
    [22] 王月明. 车辆半主动悬挂开关控制特性的研究[J]. 机械工程学报, 2002, 38(6): 148-151. doi: 10.3321/j.issn:0577-6686.2002.06.033

    WANG Yue-ming. Research on characteristics of on-off control for semi-active suspensions of vehicle[J]. Chinese Journal of Mechanical Engineering, 2002, 38(6): 148-151. (in Chinese) doi: 10.3321/j.issn:0577-6686.2002.06.033
    [23] 刘宏友, 曾京, 李莉, 等. 高速列车二系横向阻尼连续可调式半主动悬挂系统的研究[J]. 中国铁道科学, 2012, 33(4): 69-74. doi: 10.3969/j.issn.1001-4632.2012.04.12

    LIU Hong-you, ZENG Jing, LI Li, et al. Study on secondary lateral continuous adjustable damping semi-active suspension device for high-speed train[J]. China Railway Science, 2012, 33(4): 69-74. (in Chinese) doi: 10.3969/j.issn.1001-4632.2012.04.12
    [24] 包学海, 池茂儒, 杨飞. 子结构分析中主自由度选取方法研究[J]. 机械, 2009, 36(4): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-MECH200904008.htm

    BAO Xue-hai, CHI Mao-ru, YANG Fei. Research on the selection method of master degree of freedom in substructure analysis[J]. Machinery, 2009, 36(4): 18-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MECH200904008.htm
    [25] CHEN Zhao-wei, FANG Hui, HAN Zhao-ling, et al. Influence of bridge-based designed TMD on running trains[J]. Journal of Vibration and Control, 2019, 25(1): 182-193. doi: 10.1177/1077546318773022
    [26] ANTOLÍN P, ZHANG Nan, GOICOLEA J M, et al. Consideration of nonlinear wheel-rail contact forces for dynamic vehicle-bridge interaction in high-speed railway[J]. Journal of Sound and Vibration, 2013(332): 1231-1251.
    [27] ZHAO Xin, LI Zi-li. The solution of frictional wheel-rail rolling contact with a 3D transient finite element model: validation and error analysis[J]. Wear, 2011(271): 444-452.
    [28] CHEN Zhao-wei, BI Li, ZHAO Jiang-wei. Comparison of single-pier settlement model and multi-pier settlement model in solving train-track-bridge interaction[J]. Vehicle System Dynamics, 2021, 59(10): 1484-1508. doi: 10.1080/00423114.2020.1763406
    [29] 倪纯双, 王悦明. 浅析平稳性指标和舒适度指标[J]. 铁道机车车辆, 2003, 23(6): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200306000.htm

    NI Chun-shuang, WANG Yue-ming. A brief discussion for ride index and comfort[J]. Railway Locomotive and Car, 2003, 23(6): 1-3. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200306000.htm
  • 加载中
图(21) / 表(5)
计量
  • 文章访问数:  402
  • HTML全文浏览量:  230
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回