Mechanism and countermeasures of coupler separation of middle locomotive for long heavy-haul trains
Article Text (Baidu Translation)
-
摘要: 基于多体动力学理论,构建了2万吨重载列车中部机车-货车三维动力学模型,分析了连挂车钩初始高差、车钩钩头摩擦因数等关键因素对中部机车跳钩的影响规律,探究了空制缓解与牵引工况下中部机车-货车连挂车钩分离的形成机理,并提出相应的防控对策。研究结果表明:中部机车-货车连挂车钩在压钩状态下能够保持稳定,但在钩缓系统由压缩状态转变为拉伸状态的过程中,机车电制力、牵引力将使连挂车钩产生垂向相对跳动;进入拉钩状态后,较大的初始高差和较差的钩头摩擦因数使得连挂车钩自锁力不足,导致车钩间垂向相对位移迅速增大;若机车垂向转角限值过大,车钩间垂向相对位移将进一步增大至300 mm以上,最终导致车钩分离现象的发生;当钩头摩擦因数和机车车钩垂向转角限值分别为0.08、8°时,空制缓解工况下发生车钩分离所需的最小初始高差、电制力施加比例分别为40 mm、40%,牵引工况下发生车钩分离所需的最小初始高差、牵引力施加比例分别为30 mm、50%;空制缓解工况下,当初始高差为50 mm、电制力施加比例为70%时,发生车钩分离所需的最小钩头摩擦因数、机车车钩垂向转角限值分别为0.09、6°;牵引工况下,当初始高差为50 mm、牵引力施加比例为100%时,发生车钩分离所需的最小钩头摩擦因数、机车车钩垂向转角限值分别为0.10、7°。可见,为有效抑制跳钩事故的发生,须严格限制连挂车钩间的初始高差,适当减小机车电制动力/牵引力,增大车钩钩头的摩擦因数,以及限制机车车钩的垂向最大转动角度。Abstract: A three-dimensional dynamics model of the middle locomotive-wagon system for a 20 000-ton heavy-haul train was established based on the multi-body dynamics theory. The effects of the key factors such as the initial height difference between the connected coupler and the friction coefficient of the coupler head on the coupler separation were analyzed. The formation mechanism of the middle locomotive-wagon connected coupler separation under air brake release and traction conditions was analyzed, and the corresponding countermeasures were proposed. Research results indicate that the connected couplers can remain stable under the compressive force. However, during the changing process of the coupler and draft gear system from the compressive state to the pulling state, the electric braking/traction force of the locomotive will cause a certain vertical relative movement between the couplers. After the coupler force changes to the pulling state, the self-locking force between the couplers is insufficient owing to the large initial coupler height difference and the small friction coefficient of the coupler head, causing a rapid increase in the vertical relative displacement between the couplers. If the limit of the vertical rotation angle of the locomotive coupler is too large, the vertical relative displacement between the couplers will increase dramatically with the increase in the pulling force (no less than 300 mm), thereby eventually leading to the coupler separation. When the friction coefficient of the coupler head and the limit of the vertical relative displacement of the locomotive coupler are 0.08 and 8°, respectively, the minimum initial height difference of the connected couplers and the applied ratio of the braking force inducing coupler separation under the air braking release condition are 40 mm and 40%, respectively, whereas the minimum initial height difference of the connected couplers and the applied ratio of the traction force induced to coupler separation under the traction condition are 30 mm and 50%, respectively. Meanwhile, when the initial height difference of the connected couplers is 50 mm and the applied ratio of the electric braking force is 70%, the minimum friction coefficient of the coupler head and the limit of the vertical rotation angle of the locomotive coupler resulting in coupler separation under the air braking release condition are 0.09 and 6°, respectively. Furthermore, when the initial height difference of the connected couplers is 50 mm and the applied ratio of the electric traction force is 100%, the minimum friction coefficient of the coupler head and the limit of the vertical rotation angle of the locomotive coupler resulting in coupler separation under the traction condition are 0.10 and 7°, respectively. Hence, to prevent coupler separation accidents, it is necessary to strictly limit the initial height difference between the connected couplers, appropriately reduce the electric braking force/traction of the locomotive, increase the friction coefficient of the coupler head, and limit the vertical free angle of the locomotive coupler. 9 figs, 30 refs.
-
-
[1] 翟婉明, 赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001ZHAI Wan-ming, ZHAO Chun-fa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.02.001 [2] 刘建新, 易明辉, 王开云. 重载铁路车轮踏面擦伤时的轮轨动态相互作用特征[J]. 交通运输工程学报, 2010, 10(3): 52-56. doi: 10.3969/j.issn.1671-1637.2010.03.009LIU Jian-xin, YI Ming-hui, WANG Kai-yun. Characteristic of dynamic interaction between wheel and rail due to wheel tread flat on heavy haul railway[J]. Journal of Traffic and Transportation Engineering, 2010, 10(3): 52-56. (in Chinese) doi: 10.3969/j.issn.1671-1637.2010.03.009 [3] 熊嘉阳, 邓永权, 曹亚博, 等. 重载铁路轮轨磨耗及其对安全运行的影响[J]. 西南交通大学学报, 2014, 49(2): 302-309. doi: 10.3969/j.issn.0258-2724.2014.02.018XIONG Jia-yang, DENG Yong-quan, CAO Ya-bo, et al. Wheel-rail wear on heavy haul lines and its influences on running stability of trains[J]. Journal of Southwest Jiaotong University, 2014, 49(2): 302-309. (in Chinese) doi: 10.3969/j.issn.0258-2724.2014.02.018 [4] 杨逸凡, 凌亮, 杨云帆, 等. 重载机车车轮擦伤下的轮轨动态响应[J]. 工程力学, 2020, 37(12): 213-219. doi: 10.6052/j.issn.1000-4750.2020.01.0033YANG Yi-fan, LING Liang, YANG Yun-fan, et al. Wheel/rail dynamic responses due to the wheel flat of heavy-haul locomotives[J]. Engineering Mechanics, 2020, 37(12): 213-219. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0033 [5] 杨云帆, 刘志强, 高贤波, 等. 电力机车车轮非圆化磨耗特征及其对轮轨动态冲击作用影响分析[J]. 机械工程学报, 2021, 57(4): 130-139. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202104015.htmYANG Yun-fan, LIU Zhi-qiang, GAO Xian-bo, et al. Analysis on essential characteristics of the polygonal wear of locomotive wheels and its effect on wheel/rail dynamic impact[J]. Journal of Mechanical Engineering, 2021, 57(4): 130-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202104015.htm [6] 常崇义, 马颖明, 郭刚, 等. 超长重载列车纵向力影响规律仿真研究[J]. 中国铁道科学, 2021, 42(1): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202101011.htmCHANG Chong-yi, MA Ying-ming, GUO Gang, et al. Simulation study on the influence of longitudinal force on super long heavy haul trains[J]. China Railway Science, 2021, 42(1): 87-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202101011.htm [7] 朱涛, 尹敏轩, 徐京涛, 等. 重载货车车钩准静态受力分析与纵向载荷分配规律[J]. 交通运输工程学报, 2020, 20(5): 165-175. doi: 10.19818/j.cnki.1671-1637.2020.05.013ZHU Tao, YIN Min-xuan, XU Jing-tao, et al. Quasi-static force analysis and longitudinal load distribution law of heavy haul freight coupler[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 165-175. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.013 [8] 王蔚, 彭其渊, 王奇, 等. 重载列车车钩力对列车偏载安全性影响[J]. 西南交通大学学报, 2021, 56(2): 378-384. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202102021.htmWANG Wei, PENG Qi-yuan, WANG Qi, et al. Effect analysis of coupler force on heavy-haul train safety under eccentric loads[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 378-384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202102021.htm [9] 薛海, 李强, 刘文飞. 基于失效概率的重载货车钩体的抗疲劳设计[J]. 铁道学报, 2017, 39(3): 37-41. doi: 10.3969/j.issn.1001-8360.2017.03.007XUE Hai, LI Qiang, LIU Wen-fei. Anti-fatigue design of heavy wagon coupler based on failure probability[J]. Journal of the China Railway Society, 2017, 39(3): 37-41. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.03.007 [10] 王开云, 张瑞, 陈再刚, 等. 车钩箱位置误差对重载机车动态性能的影响[J]. 西南交通大学学报, 2016, 51(6): 1041-1046. doi: 10.3969/j.issn.0258-2724.2016.06.001WANG Kai-yun, ZHANG Rui, CHEN Zai-gang, et al. Effect of coupler position errors on dynamic performance of heavy haul locomotive[J]. Journal of Southwest Jiaotong University, 2016, 51(6): 1041-1046. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.06.001 [11] 伏远昱. 大秦线2.1万吨列车中部机车与车辆车钩分离问题初探[J]. 铁道机车车辆, 2020, 40(4): 109-111, 115. doi: 10.3969/j.issn.1008-7842.2020.04.21FU Yuan-yu. Preliminary study on the coupler separation problem of the middle locomotives of 21 000 t Daqin Trains[J]. Railway Locomotive and Car, 2020, 40(4): 109-111, 115. (in Chinese) doi: 10.3969/j.issn.1008-7842.2020.04.21 [12] MA Wei-hua, LUO Shi-hui, SONG Rong-rong. Coupler dynamic performance analysis of heavy haul locomotives[J]. Vehicle System Dynamics, 2012, 50(9): 1435-1452. doi: 10.1080/00423114.2012.667134 [13] 许自强, 罗世辉, 马卫华, 等. 机车关键参数对车钩转角与机车运行安全性的影响[J]. 交通运输工程学报, 2013, 13(3): 47-52. doi: 10.3969/j.issn.1671-1637.2013.03.007XU Zi-qiang, LUO Shi-hui, MA Wei-hua, et al. Influence of locomotive key parameters on coupler rotation angle and locomotive running safety[J]. Journal of Traffic and Transportation Engineering, 2013, 13(3): 47-52. (in Chinese) doi: 10.3969/j.issn.1671-1637.2013.03.007 [14] YAO Yuan, ZHANG Xiao-xia, ZHANG Hong-jun, et al. The stability mechanism and its application to heavy-haul couplers with arc surface contact[J]. Vehicle System Dynamics, 2013, 51(9): 1324-1341. doi: 10.1080/00423114.2013.801500 [15] ZHANG Zhi-chao, LI Gu, CHU Gao-feng, et al. Compressed stability analysis of the coupler and buffer system of heavy-haul locomotives[J]. Vehicle System Dynamics, 2015, 53(6): 833-855. doi: 10.1080/00423114.2015.1023318 [16] SHI Zhi-yong, WANG Kai-yun, GUO Li-rong, et al. Effect of arc surfaces friction coefficient on coupler stability in heavy haul locomotives: simulation and experiment[J]. Vehicle System Dynamics, 2017, 55(9): 1368-1383. doi: 10.1080/00423114.2017.1313434 [17] WU Guo-song, WANG Huang, YAO Yuan. Improvements for the stability of heavy-haul couplers with arc surface contact[J]. Vehicle System Dynamics, 2018, 56(3): 428-442. doi: 10.1080/00423114.2017.1381982 [18] 钟文生, 汪煌, 张江田, 等. 设有挡肩的尾端圆弧接触重载车钩稳钩能力研究[J]. 铁道学报, 2018, 40(4): 31-35. doi: 10.3969/j.issn.1001-8360.2018.04.005ZHONG Wen-sheng, WANG Huang, ZHANG Jiang-tian, et al. Pressure stability of the arc-end heavy haul coupler with restoring bumpstop[J]. Journal of the China Railway Society, 2018, 40(4): 31-35. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.04.005 [19] GUO Li-rong, WANG Kai-yun. Analysis of coupler jackknifing and its effect on locomotives on a tangent track[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(5): 1559-1573. doi: 10.1177/0954409717738429 [20] GUO Li-rong, WANG Kai-yun, CHEN Zai-gang, et al. Analysis of the car body stability performance after coupler jack-knifing during braking[J]. Vehicle System Dynamics, 2018, 56(6): 900-922. doi: 10.1080/00423114.2017.1401099 [21] LYU Kai-kai, WANG Kai-yun, CHEN Zai-gang, et al. The effect of the secondary lateral stopper on the compressed stability of the couplers and running safety of the locomotives[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(3): 851-862. doi: 10.1177/0954409717699040 [22] 许英奎. 铁路货车车钩分离原因分析及预防[J]. 沈阳工程学院学报(自然科学版), 2012, 8(3): 266-269. doi: 10.3969/j.issn.1673-1603.2012.03.021XU Ying-kui. Cause analysis and preventative measures of coupler separation of railway freight car[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2012, 8(3): 266-269. (in Chinese) doi: 10.3969/j.issn.1673-1603.2012.03.021 [23] 邹新军. 大秦线6起机车车辆分离的原因分析及建议[J]. 铁道车辆, 2008, 46(11): 39-40. doi: 10.3969/j.issn.1002-7602.2008.11.014ZOU Xin-jun. Analysis of causes to 6 separation accidents in locomotive and rolling stock on Daqin Line and suggestions[J]. Rolling Stock, 2008, 46(11): 39-40. (in Chinese) doi: 10.3969/j.issn.1002-7602.2008.11.014 [24] 邹瑞明, 马卫华, 罗世辉. 机车与车辆间车钩连挂稳定性[J]. 交通运输工程学报, 2016, 16(6): 48-54. doi: 10.3969/j.issn.1671-1637.2016.06.006ZOU Rui-ming, MA Wei-hua, LUO Shi-hui. Coupling stability of couplers between locomotive and vehicle[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 48-54. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.06.006 [25] 邹瑞明. 组合式重载列车中部机车运行安全性研究[D]. 成都: 西南交通大学, 2015.ZOU Rui-ming. Research on the running safety of middle locomotive of combined heavy haul train[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese) [26] 韩朝建, 曲宝章, 徐超, 等. 基于MBD/SVM车钩分离故障预测的新方法[J]. 振动与冲击, 2019, 38(14): 216-222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201914031.htmHAN Chao-jian, QU Bao-zhang, XU Chao, et al. New prediction method for the fault of coupler separation based on MBD/SVM[J]. Journal of Vibration and Shock, 2019, 38(14): 216-222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201914031.htm [27] 任海, 刘文俊, 秦浩, 等. 重载列车车钩爬钩机理及对策研究[J]. 铁道车辆, 2020, 58(5): 3-6, 52. doi: 10.3969/j.issn.1002-7602.2020.05.003REN Hai, LIU Wen-jun, QIN Hao, et al. Research on the coupler climbing mechanism of heavy haul trains and counter measures[J]. Rolling Stock, 2020, 58(5): 3-6, 52. (in Chinese) doi: 10.3969/j.issn.1002-7602.2020.05.003 [28] 吴键, 凌亮, 郝崇杰, 等. 空缓条件下两万吨重载列车中部机车车辆纵垂向冲动仿真分析[J]. 机械, 2020, 47(10): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-MECH202010009.htmWU Jian, LING Liang, HAO Chong-jie, et al. Simulation analysis of longitudinal and vertical impulse of central locomotive and its connected vehicles of 20 000 t heavy-haul train under air brake release conditions[J]. Machinery, 2020, 47(10): 53-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MECH202010009.htm [29] GE Xin, LING Liang, GUO Li-rong, et al. Dynamic derailment simulation of an empty wagon passing a turnout in the through route[J]. Vehicle System Dynamics, 2020, DOI: 10.1080/00423114.2020.1849744. [30] GE Xin, LING Liang, CHEN Shi-qian, et al. Countermeasures for preventing coupler jack-knifing of slave control locomotives in 20 000-tonne heavy-haul trains during cycle braking[J]. Vehicle System Dynamics, 2021, DOI: 10.1080/00423114.2021.1942509. -