留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于目标级联分析法的车下设备悬挂参数优化设计

贺小龙 陈杰 鄂世举 唐大勇 张立民

贺小龙, 陈杰, 鄂世举, 唐大勇, 张立民. 基于目标级联分析法的车下设备悬挂参数优化设计[J]. 交通运输工程学报, 2021, 21(6): 321-330. doi: 10.19818/j.cnki.1671-1637.2021.06.026
引用本文: 贺小龙, 陈杰, 鄂世举, 唐大勇, 张立民. 基于目标级联分析法的车下设备悬挂参数优化设计[J]. 交通运输工程学报, 2021, 21(6): 321-330. doi: 10.19818/j.cnki.1671-1637.2021.06.026
HE Xiao-long, CHEN Jie, E Shi-ju, TANG Da-yong, ZHANG Li-min. Optimization design on suspension parameters of equipment mounted under car body via analytical target cascading method[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 321-330. doi: 10.19818/j.cnki.1671-1637.2021.06.026
Citation: HE Xiao-long, CHEN Jie, E Shi-ju, TANG Da-yong, ZHANG Li-min. Optimization design on suspension parameters of equipment mounted under car body via analytical target cascading method[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 321-330. doi: 10.19818/j.cnki.1671-1637.2021.06.026

基于目标级联分析法的车下设备悬挂参数优化设计

doi: 10.19818/j.cnki.1671-1637.2021.06.026
基金项目: 

浙江省城市轨道交通智能运维技术与装备重点实验室开放课题 ZSDRTKF2020004

牵引动力国家重点实验室开放课题 TPL2106

国家自然科学基金项目 52005068

中国博士后科学基金项目 2021M692874

详细信息
    作者简介:

    贺小龙(1989-),男,四川苍溪人,重庆文理学院副教授,工学博士,从事车辆系统振动控制研究

    通讯作者:

    鄂世举(1976-),男,吉林长春人,浙江师范大学教授,工学博士

  • 中图分类号: U270.11

Optimization design on suspension parameters of equipment mounted under car body via analytical target cascading method

Funds: 

Open Project of Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology and Equipment of Zhejiang Province ZSDRTKF2020004

Open Project of State Key Laboratory of Traction Power TPL2106

National Natural Science Foundation of China 52005068

China Postdoctoral Science Foundation 2021M692874

More Information
  • 摘要: 为改善高速列车运行舒适度和车下悬挂设备的振动水平,建立了车辆-设备系统垂向动力学模型,推导了车辆系统振动加速度频率响应函数;结合轨道不平顺激励谱函数计算了车下悬挂设备振动加速度均方根,联合人体舒适度加权滤波函数计算了车体振动参考点的垂向舒适度指标;引入目标级联分析(ATC)法逐层分解车辆-设备系统振动指标,构建了车辆-设备系统两层指标分解数学模型,采用指数罚函数策略协调两层振动指标之间的耦合问题;提出了以车辆运行舒适度和车下悬挂设备振动加速度为指标的多目标优化方法,建立了以车下设备悬挂刚度和阻尼为设计变量的优化模型;联合车下设备悬挂参数动力吸振器(DVA)设计法对比探讨了ATC法在复杂车辆系统参数优化设计中的应用效果。分析结果表明:与DVA设计法相比,ATC法优化后车辆中部舒适度在300 km·h-1工况下提高了8.5%,设备振动水平减小了约20%;在全速域区间,ATC法对车体中部的振动衰减是DVA设计法的2倍,且对设备的振动衰减比DVA设计法大4.5 dB;与优化前相比,ATC法优化后车辆中部舒适度指标最大提升了15%,设备振动加速度减小了0.18 m·s-2。由此可见,ATC法可以运用于复杂轨道车辆结构参数优化设计中,能有效改善车辆系统的振动水平,也可为车下设备悬挂参数优化设计提供指导。

     

  • 图  1  车辆-设备系统垂向动力学模型

    Figure  1.  Vehicle-equipment system vertical dynamics model

    图  2  层次问题结构示例

    Figure  2.  Example of hierarchical issue structure

    图  3  层次问题与变量分配

    Figure  3.  Hierarchical issue and variable allocation

    图  4  车辆设备系统指标分解数据流

    Figure  4.  Vehicle-equipment system indexes decomposition data stream

    图  5  车体和设备振动指标分解

    Figure  5.  Vibration indexes decomposition of car body and equipment

    图  6  车辆-设备系统ATC模型

    Figure  6.  ATC model of vehicle-equipment system

    图  7  车辆系统振动指标变化

    Figure  7.  Changes in vibration indexes of vehicle system

    图  8  两种优化方法所得车辆-设备系统振动指标变化百分比

    Figure  8.  Percentage changes in vibration indexes of vehicle-equipment system obtained by two optimization methods

    图  9  车辆-设备系统振动插入损失

    Figure  9.  Vehicle-equipment system vibration insertion losses

    图  10  车辆乘坐舒适度指标和设备振动加速度曲线

    Figure  10.  Curves of riding comfort indexes of vehicle and vibration accelerations of equipment

    表  1  车辆系统参数

    Table  1.   Vehicle system parameters

    参数 数值 参数 数值
    mc/kg 2.6×104 kzc/(MN·m-1) 0.8
    mb/kg 2.5×103 kzb/(MN·m-1) 1.4
    me/kg 400 czc/(kN·s·m-1) 30
    ab/m 1.25 czb/(kN·s·m-1) 15
    ac/m 8.75 Ic/(kg·m2) 1.3×106
    l/m 24.5 Ib(kg·m2) 1.5×103
    le/m 14.25
    下载: 导出CSV

    表  2  采用DVA设计法和ATC法获得的最优设计变量

    Table  2.   Optimal design variables obtained via design method of DVA and ATC method

    悬挂参数 设计变量 初始值 ATC DVA
    刚度 kze/(MN·m-1) 0.55 0.65 0.81
    阻尼 cze/(kN·s·m-1) 1.00 2.99 2.11
    下载: 导出CSV
  • [1] DUMITRIU M. Numerical analysis on the influence of suspended equipment on the ride comfort in railway vehicles[J]. Archive of Mechanical Engineering, 2018, 65(4): 477-496.
    [2] TOMIOKA T, TAKIGAMI T, SUZUKI Y. Numerical analysis of three-dimensional flexural vibration of railway vehicle car body[J]. Vehicle System Dynamics, 2006, 44(S): 272-285.
    [3] XIA Zhang-hui, ZHOU Jin-song, LIANG Jian-ying, et al. Online detection and control of car body low-frequency swaying in railway vehicles[J]. Vehicle System Dynamics, 2021, 59(1): 70-100. doi: 10.1080/00423114.2019.1664751
    [4] 曹辉, 张卫华, 缪炳荣. 车体弹性效应下的垂向振动特性研究[J]. 铁道学报, 2017, 39(6): 48-54. doi: 10.3969/j.issn.1001-8360.2017.06.006

    CAO Hui, ZHANG Wei-hua, MIAO Bing-rong. Study on vertical vibration characteristics of car body under flexible effect[J]. Journal of the China Railway Society, 2017, 39(6): 48-54. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.06.006
    [5] 向福腾, 阳光武. 悬挂设备隔振频率与刚度优化分析[J]. 机械设计与制造, 2017(12): 19-22. doi: 10.3969/j.issn.1001-3997.2017.12.005

    XIANG Fu-teng, YANG Guang-wu. Suspension equipment vibration isolation frequency and stiffness optimization analysis[J]. Machinery Design and Manufacture, 2017(12): 19-22. (in Chinese) doi: 10.3969/j.issn.1001-3997.2017.12.005
    [6] 于金朋, 宋青鹏, 张明远, 等. 高速列车牵引变压器振动响应容限有限元分析[J]. 交通运输工程学报, 2016, 16(5): 42-48. doi: 10.3969/j.issn.1671-1637.2016.05.005

    YU Jin-peng, SONG Qing-peng, ZHANG Ming-yuan, et al. FEA of vibration response tolerance of traction transformer for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 42-48. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.05.005
    [7] 邓海, 宫岛, 周劲松, 等. 速列车车体下吊设备隔振设计及试验研究[J]. 城市轨道交通研究, 2015, 18(2): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201502012.htm

    DENG Hai, GONG Dao, ZHOU Jin-song, et al. On vibration isolation design and test of suspended equipment on high-speed railway vehicle[J]. Urban Mass Transit, 2015, 18(2): 44-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201502012.htm
    [8] GONG Dao, ZHOU Jin-song, SUN Wen-jing, et al. Method of multi-mode vibration control for the carbody of high-speed electric multiple unit trains[J]. Journal of Sound and Vibration, 2017, 409(24): 94-111.
    [9] GONG Dao, WANG Ze-gen, LIU Guang-yu, et al. A modal frequency optimization approach for a fully-equipped car body of high-speed trains[J]. Journal of Mechanical Science and Technology, 2020, 34(1): 11-21. doi: 10.1007/s12206-019-1202-4
    [10] 吴会超, 邬平波, 曾京, 等. 车下设备对车体振动的影响[J]. 交通运输工程学报, 2012, 12(5): 50-56. doi: 10.3969/j.issn.1671-1637.2012.05.007

    WU Hui-chao, WU Ping-bo, ZENG Jing, et al. Influence of equipment under car on carbody vibration[J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 50-56. (in Chinese) doi: 10.3969/j.issn.1671-1637.2012.05.007
    [11] GONG Dao, ZHOU Jin-song, SUN Wen-jing. On the resonant vibration of a flexible railway car body and its suppression with a dynamic vibration absorber[J]. Journal of Vibration and Control, 2013, 19(5): 649-657. doi: 10.1177/1077546312437435
    [12] 石怀龙, 罗仁, 邬平波, 等. 基于动力吸振原理的动车组车下设备悬挂参数设计[J]. 机械工程学报, 2014, 50(14): 155-161. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201414026.htm

    SHI Huai-long, LUO Ren, WU Ping-bo, et al. Suspension parameters designing of equipment for electric multiple units based on dynamic vibration absorber theory[J]. Journal of Mechanical Engineering, 2014, 50(14): 155-161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201414026.htm
    [13] LUO Guang-bing, ZENG Jing, WANG Qun-sheng. Identifying the relationship between suspension parameters of underframe equipment and carbody modal frequency[J]. Journal of Modern Transportation, 2014, 22(4): 206-213. doi: 10.1007/s40534-014-0060-0
    [14] 贺小龙, 张立民, 鲁连涛, 等. 基于几何滤波效应的高速列车牵引变压器悬挂参数设计[J]. 振动与冲击, 2019, 38(2): 259-264, 270. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201902037.htm

    HE Xiao-long, ZHANG Li-min, LU Lian-tao, et al. Design of traction transformer of high speed train suspending parameter based on geometry filtering effect[J]. Journal of Vibration and Shock, 2019, 38(2): 259-264, 270. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201902037.htm
    [15] 贺小龙, 张立民, 张富兵, 等. 高速列车牵引变压器悬挂参数动态优化设计[J]. 交通运输工程学报, 2018, 18(5): 100-110. doi: 10.3969/j.issn.1671-1637.2018.05.010

    HE Xiao-long, ZHANG Li-min, ZHANG Fu-bing, et al. Dynamic optimization design of suspension parameters of traction transformer for high speed train[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 100-110. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.05.010
    [16] WANG Qun-sheng, ZENG Jing, WEI Lai, et al. Carbody vibrations of high-speed train caused by dynamic unbalance of underframe suspended equipment[J]. Advances in Mechanical Engineering, 2018, 10(12): 1-13.
    [17] XIA Zhang-hui, GONG Dao, ZHOU Jin-song, et al. Decoupling optimization design of under-chassis equipment suspension system in high-speed trains[J]. Shock and Vibration, 2018, 2018: 1-12.
    [18] HUANG Cai-hong, ZENG Jing, LUO Guang-bing, et al. Numerical and experimental studies on the car body flexible vibration reduction due to the effect of car body-mounted equipment[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(1): 103-120. doi: 10.1177/0954409716657372
    [19] 孙煜, 周劲松, 宫岛, 等. 基于人体敏感频率的二自由度动力吸振器研究[J]. 铁道学报, 2019, 41(6): 46-52. doi: 10.3969/j.issn.1001-8360.2019.06.007

    SUN Yu, ZHOU Jin-song, GONG Dao, et al. Study on two-dimensional dynamic vibration absorber based on human sensitive frequency[J]. Journal of the China Railway Society, 2019, 41(6): 46-52. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.06.007
    [20] SUN Yu, GONG Dao, ZHOU Jin-song, et al. Low frequency vibration control of railway vehicles based on a high static low dynamic stiffness dynamic vibration absorber[J]. Science China (Technological Sciences), 2019, 62(1): 60-69. doi: 10.1007/s11431-017-9300-5
    [21] 朱涛, 雷成, 肖守讷, 等. 车下弹性吊挂设备悬挂刚度选取方法[J]. 交通运输工程学报, 2018, 18(5): 111-118. doi: 10.3969/j.issn.1671-1637.2018.05.011

    ZHU Tao, LEI Cheng, XIAO Shou-ne, et al. Suspension stiffness selecting method of elastic suspension equipment under vehicle[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 111-118. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.05.011
    [22] 于金朋, 张卫华, 张立民, 等. 高速动车组车下悬挂设备隔振设计研究[J]. 铁道学报, 2017, 39(1): 33-40. doi: 10.3969/j.issn.1001-8360.2017.01.005

    YU Jin-peng, ZHANG Wei-hua, ZHANG Li-min, et al. Research on vibration isolation design of suspension equipment for high-speed train[J]. Journal of the China Railway Society, 2017, 39(1): 33-40. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.01.005
    [23] 郑晓龙, 徐昕宇, 陈列, 等. 中德高速铁路轨道谱在车桥耦合中的应用对比[J]. 铁道科学与工程学报, 2021, 18(5): 1090-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202105003.htm

    ZHENG Xiao-long, XU Xin-yu, CHEN Lie, et al. Comparison of application of track spectrum of high speed railway between China and Germany in vehicle bridge coupling[J]. Journal of Railway Science and Engineering, 2021, 18(5): 1090-1097. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202105003.htm
    [24] WANG Li-min, CHEN Chen. The comfort measurement of urban railway train based on UIC513 standard[C]//Scitepress— Science and Technology Publications. Proceedings of the 3rd International Conference on Microelectronic Control Technology and Transportation. Lisbon: Scitepress—Science and Technology Publications, 2018: 383-386.
    [25] CHAN K Y. A sequential linearization technique for analytical target cascading[C]//ASME. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ASME, 2008: 895-905.
    [26] ZHANG Xiao-ling, HUANG Hong-zhong, WANG Zhong-lai, et al. A Pareto set coordination method for analytical target cascading[J]. Concurrent Engineering: Research and Applications, 2013, 21(4): 286-295. doi: 10.1177/1063293X13499358
    [27] 陈潇凯, 陈勇, 林逸. 目标分流法理论及其在汽车开发中的应用[J]. 北京理工大学学报, 2009, 29(6): 515-519. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG200906012.htm

    CHEN Xiao-kai, CHEN Yong, LIN Yi. Theory and application of analytical target cascading in automobile product development[J]. Transactions of Beijing Institute of Technology, 2009, 29(6): 515-519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG200906012.htm
    [28] 王健, 谢伟, 王涛, 等. 基于目标分流方法的船舶概念方案多学科设计优化[J]. 中国舰船研究, 2017, 12(5): 22-29. doi: 10.3969/j.issn.1673-3185.2017.05.003

    WANG Jian, XIE Wei, WANG Tao, et al. Application of analytical target cascading method in multidisciplinary design optimization of ship conceptual design[J]. Chinese Journal of Ship Research, 2017, 12(5): 22-29. (in Chinese) doi: 10.3969/j.issn.1673-3185.2017.05.003
    [29] DORMOHAMMADI S, RAIS-ROHANI M. Exponential penalty function formulation for multilevel optimization using the analytical target cascading framework[J]. Structural and Multidisciplinary Optimization, 2013, 47(4): 599-612. doi: 10.1007/s00158-012-0861-x
    [30] KORT B W, BERTSEKAS D P. A new penalty function method for constrained minimization[C]//IEEE. Proceedings of the 1972 IEEE Conference on Decision and Control and 11th Symposium on Adaptive Processes. New York: IEEE, 1972: 162-166.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  493
  • HTML全文浏览量:  174
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回