留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

齿轨铁路导入装置动力学特性

陈再刚 唐亮 杨吉忠 陈志辉 翟婉明

陈再刚, 唐亮, 杨吉忠, 陈志辉, 翟婉明. 齿轨铁路导入装置动力学特性[J]. 交通运输工程学报, 2022, 22(1): 122-132. doi: 10.19818/j.cnki.1671-1637.2022.01.010
引用本文: 陈再刚, 唐亮, 杨吉忠, 陈志辉, 翟婉明. 齿轨铁路导入装置动力学特性[J]. 交通运输工程学报, 2022, 22(1): 122-132. doi: 10.19818/j.cnki.1671-1637.2022.01.010
CHEN Zai-gang, TANG Liang, YANG Ji-zhong, CHEN Zhi-hui, ZHAI Wan-ming. Dynamics characteristics of rack railway guiding equipment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 122-132. doi: 10.19818/j.cnki.1671-1637.2022.01.010
Citation: CHEN Zai-gang, TANG Liang, YANG Ji-zhong, CHEN Zhi-hui, ZHAI Wan-ming. Dynamics characteristics of rack railway guiding equipment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 122-132. doi: 10.19818/j.cnki.1671-1637.2022.01.010

齿轨铁路导入装置动力学特性

doi: 10.19818/j.cnki.1671-1637.2022.01.010
基金项目: 

国家自然科学基金项目 52022083

国家自然科学基金项目 51735012

四川省科技计划项目 2021YFG0065

四川省科技计划项目 2021YFG0065, 2021YFG0211

详细信息
    作者简介:

    陈再刚(1984-),男,四川犍为人,西南交通大学研究员,工学博士,从事轨道机车车辆与机械传动系统动力学研究

  • 中图分类号: U234

Dynamics characteristics of rack railway guiding equipment

Funds: 

National Natural Science Foundation of China 52022083

National Natural Science Foundation of China 51735012

Sichuan Science and Technology Program 2021YFG0065

Sichuan Science and Technology Program 2021YFG0065, 2021YFG0211

More Information
  • 摘要: 利用大型有限元商业软件ABAQUS建立了车辆-齿轨铁路导入装置耦合动力学有限元模型;仿真了齿轨车辆通过齿轨铁路导入装置的过程,分析了车辆与齿轨铁路导入装置的动态相互作用;考虑不同参数的影响,研究了齿轨铁路导入装置振动响应、结构应力、动态接触力等动态特性响应规律。研究结果表明:随着支撑弹簧预紧力的增大,齿轮转速能更快达到与车速匹配的速度,且总体上同步装置振动与动态应力会增大,入齿装置振动和动态应力将减小,校正装置振动也将减小;确定合理的支撑弹簧预紧力,应综合考虑结构应力及振动水平,在本文计算工况中,建议预紧力取3 kN;齿轨铁路导入装置的最大振动速度为5.66 m·s-1,振动速度最大均方根为1.31 m·s-1,最大振动加速度为5 657.82 m·s-2,振动加速度最大均方根为479.36 m·s-2,都出现在支撑弹簧预紧力1 kN工况下;随着齿轮初始转速增加至车速,总体上同步装置垂向振动变化不大,纵向振动减小,齿轮初始转速越接近车速越好;列车通过速度越大,齿轮对整个齿轨铁路导入装置的冲击力越大,因此,确定合理的列车通过速度,应综合考虑冲击振动及行车效率,在计算的5和10 km·h-1的速度中,建议通过速度为5 km·h-1或者低于5 km·h-1

     

  • 图  1  齿轨铁路导入装置结构

    Figure  1.  Structure of RRGE

    图  2  车辆-齿轨铁路导入装置耦合动力学有限元模型

    Figure  2.  Coupled dynamics finite element model of vehicle-RRGE

    图  3  齿轮转动角位移时程曲线

    Figure  3.  Time-history curves of gear rotation angular displacement

    图  4  齿轮转速时程曲线

    Figure  4.  Time-history curves of gear rotation speed

    图  5  同步装置垂向位移时程曲线

    Figure  5.  Time-history curves of vertical displacement of synchronous section

    图  6  同步装置右端振动速度时程曲线

    Figure  6.  Time-history curve of vibration velocity at right end of synchronous section

    图  7  同步装置右端振动加速度时程曲线

    Figure  7.  Time-history curve of vibration acceleration at right end of synchronous section

    图  8  齿轨铁路导入装置振动速度响应统计结果

    Figure  8.  Statistical results of vibration velocity response of RRGE

    图  9  齿轨铁路导入装置振动加速度响应统计结果

    Figure  9.  Statistical results of vibration acceleration response of RRGE

    图  10  校正装置最大齿根应力

    Figure  10.  Maximum root stresses of calibration section

    图  11  齿轨铁路导入装置最大垂向位移

    Figure  11.  Maximum vertical displacements of RRGE

    图  12  齿轨铁路导入装置垂向振动速度均方根

    Figure  12.  Root mean squares of vertical vibration velocity of RRGE

    图  13  齿轨铁路导入装置垂向振动加速度均方根

    Figure  13.  Root mean squares of vertical vibration acceleration of RRGE

    图  14  齿轨铁路导入装置纵向振动速度均方根

    Figure  14.  Root mean squares of longitudinal vibration velocity of RRGE

    图  15  齿轨铁路导入装置纵向振动加速度均方根

    Figure  15.  Root mean squares of longitudinal vibration acceleration of RRGE

    表  1  齿轮与齿条传动设计参数

    Table  1.   Gear and rack drive design parameters

    参数 齿轮 齿条
    全齿高/mm 62.580 52.115
    模数/mm 31.831 31.831
    齿形角/(°) 14.036 14.036
    齿宽/mm 60 60
    齿数 22
    齿顶高系数 0.9
    顶隙系数 0.166
    下载: 导出CSV

    表  2  齿轨铁路导入装置最大垂向位移

    Table  2.   Maximum vertical displacements of RRGE

    预紧力/kN 轨道位置 垂向位移/mm
    1 入齿装置左端 197.34
    2 入齿装置左端 66.38
    3 入齿装置左端 46.51
    1 入齿装置右端 82.09
    2 入齿装置右端 64.28
    3 入齿装置右端 12.06
    1 校正装置左端 56.63
    2 校正装置左端 18.48
    3 校正装置左端 4.63
    下载: 导出CSV

    表  3  同步装置底板应力

    Table  3.   Base plate stresses of synchronous section

    预紧力/kN 位置 应力最大值/MPa 应力均方根/MPa
    1 53.21 8.22
    2 72.35 14.07
    3 59.86 16.42
    1 62.58 18.50
    2 100.75 37.06
    3 142.23 54.16
    1 37.35 7.64
    2 55.38 12.76
    3 72.58 15.99
    下载: 导出CSV

    表  4  垂向接触力仿真计算结果

    Table  4.   Simulation results of vertical contact force

    速度/(km·h-1) 接触对 最大值/kN 均方根/kN
    5 齿轮-同步装置 36.65 7.27
    5 齿轮-入齿装置 49.12 8.07
    5 齿轮-校正装置 13.72 0.97
    10 齿轮-同步装置 82.13 8.94
    10 齿轮-入齿装置 124.18 16.97
    10 齿轮-校正装置 188.52 16.85
    下载: 导出CSV

    表  5  纵向接触力仿真计算结果

    Table  5.   Simulation results of longitudinal contact force

    速度/(km·h-1) 接触对 最大值/kN 均方根/kN
    5 齿轮-同步装置 61.36 2.47
    5 齿轮-入齿装置 56.91 11.05
    5 齿轮-校正装置 55.08 3.55
    10 齿轮-同步装置 114.93 4.30
    10 齿轮-入齿装置 267.99 30.86
    10 齿轮-校正装置 342.07 38.51
    下载: 导出CSV
  • [1] WEBER M, ABT M S. Rack-railway locomotives of the Swiss mountain railways[J]. Proceedings of the Institution of Mechanical Engineers, 1911, 81(1): 539-577. doi: 10.1243/PIME_PROC_1911_081_007_02
    [2] 王争鸣. 复杂山区铁路选线思路及理念[J]. 铁道工程学报, 2016, 33(10): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201610002.htm

    WANG Zheng-ming. Methods and ideas of railway route selection in complicated mountainous areas[J]. Journal of Railway Engineering Society, 2016, 33(10): 5-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201610002.htm
    [3] 井国庆, 杜文博, 蔡向辉, 等. 齿轨铁路齿轨系统及轨下基础研究[J]. 中国铁路, 2021(3): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202103017.htm

    JING Guo-qing, DU Wen-bo, CAI Xiang-hui, et al. Track structure system and stress of rack railway[J]. China Railway, 2021(3): 94-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202103017.htm
    [4] 冯帅. 山区旅游观光铁路车辆选型探讨[J]. 铁道建筑技术, 2017(2): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201702008.htm

    FENG Shuai. Discussion on vehicle selection of mountain tourist railway[J]. Railway Construction Technology, 2017(2): 27-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201702008.htm
    [5] 沈健. 山地齿轨旅游交通系统技术及应用研究[J]. 机械工程与自动化, 2020(4): 222-224. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX202004092.htm

    SHEN Jian. Research on technology and application of mountainous rack tourism transportation system[J]. Mechanical Engineering and Automation, 2020(4): 222-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX202004092.htm
    [6] STARBUCK D R. The Cog Railway on Mount Washington[J]. The Journal of the Society for Industrial Archeology, 1994, 20(1/2): 101-118.
    [7] SMITH P. Thomas Cook and Son's Vesuvius Railway[J]. Japan Railway and Transport Review, 1998, 15(3): 10-15.
    [8] 牛悦丞, 李芾, 丁军君, 等. 齿轨铁路发展及应用现状综述[J]. 铁道标准设计, 2019, 63(12): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201912008.htm

    NIU Yue-cheng, LI Fu, DING Jun-jun, et al. Overview of mountain rack railway development and application[J]. Railway Standard Design, 2019, 63(12): 37-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201912008.htm
    [9] 姬燕男. 张家界七星山齿轨铁路编组方案研究[J]. 甘肃科学学报, 2021, 33(6): 62-68.

    JI Yan-nan. Research on the marshalling scheme of Qixing Mountain Rack Railway in Zhangjiajie[J]. Journal of Gansu Sciences, 2021, 33(6): 62-68. (in Chinese)
    [10] 尚勤, 李廉枫, 涂旭. 国外齿轨铁路技术的发展及运用[J]. 机车电传动, 2019(2): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201902002.htm

    SHANG Qin, LI Lian-feng, TU Xu. Development and application of foreign cog railways and rack vehicles[J]. Electric Drive for Locomotives, 2019(2): 9-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201902002.htm
    [11] 余浩伟, 章玉伟, 陈粒. 齿轨铁路技术特点与应用展望研究[J]. 铁道工程学报, 2020, 37(10): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202010002.htm

    YU Hao-wei, ZHANG Yu-wei, CHEN Li. Research on the technical characteristics and application prospect of the rack railway[J]. Journal of Railway Engineering Society, 2020, 37(10): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202010002.htm
    [12] 舒睿洪, 陈志辉, 杨吉忠, 等. 山地齿轨系统结构特点及关键参数选型设计[J]. 铁道工程学报, 2021, 38(9): 24-28, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202109005.htm

    SHU Rui-hong, CHEN Zhi-hui, YANG Ji-zhong, et al. Structural characteristics and key structure parameter selections of mountain cog railway[J]. Journal of Railway Engineering Society, 2021, 38(9): 24-28, 67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202109005.htm
    [13] 潘相楠, 唐岚, 寇峻瑜, 等. 山地齿轨铁路发展现状及国内应用前景研究[J]. 黑龙江科学, 2020, 11(4): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HELJ202004003.htm

    PAN Xiang-nan, TANG Lan, KOU Jun-yu, et al. Development status and domestic application research of cog railway[J]. Heilongjiang Science, 2020, 11(4): 10-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HELJ202004003.htm
    [14] NAGY A, LAKATOS I. Examining the movement differences in the behavior of normal and rack railway vehicle[J]. International Journal of Engineering and Management Sciences, 2019, 4(1): 96-103. doi: 10.21791/IJEMS.2019.1.13.
    [15] 刘宗峰. 齿轨铁路设计规范编制中桥梁荷载取值研究[J]. 铁道标准设计, 2019, 63(12): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201912020.htm

    LIU Zong-feng. Study on bridge load value in compiling design code for rack rail[J]. Railway Standard Design, 2019, 63(12): 102-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201912020.htm
    [16] 刘宗峰. 旅游轨道交通桥梁设计特点分析——以张家界市旅游轨道交通为例[J]. 铁道标准设计, 2019, 63(6): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201906018.htm

    LIU Zong-feng. Analysis of bridge design characteristics of tourism rail transit—taking Zhangjiajie tourist rail transit as an example[J]. Railway Standard Design, 2019, 63(6): 77-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201906018.htm
    [17] 李粮余, 欧灵畅, 尤睿, 等. 山地米轨铁路有砟轨道结构稳定性研究[J]. 铁道工程学报, 2019, 36(12): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201912005.htm

    LI Liang-yu, OU Ling-chang, YOU Rui, et al. Research on the stability of ballasted track structure in mountainous metergage railway[J]. Journal of Railway Engineering Society, 2019, 36(12): 23-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201912005.htm
    [18] 张永权, 王薇, 刘朝辉, 等. 重型采煤机齿轨轮齿形优化与啮合仿真[J]. 煤矿机电, 2016(2): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-MKJD201602011.htm

    ZHANG Yong-quan, WANG Wei, LIU Zhao-hui, et al. Gear shape optimization and meshing simulation of heavy shearer[J]. Colliery Mechanical and Electrical Technology, 2016(2): 37-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKJD201602011.htm
    [19] 马雁翔, 续利文. 基于Pro/E采煤机复合齿廓销轨轮啮合仿真[J]. 煤矿机械, 2012, 33(7): 90-91. https://www.cnki.com.cn/Article/CJFDTOTAL-MKJX201207043.htm

    MA Yan-xiang, XU Li-wen. Compound tooth profile pin gear meshing simulation of coal shearer based Pro/E[J]. Coal Mine Machinery, 2012, 33(7): 90-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKJX201207043.htm
    [20] 赵冠闯, 冯济桥, 丁军君, 等. 车体重心高度和转动惯量对齿轨车辆动力学性能的影响[J]. 铁道标准设计, 2021, 65(9): 181-186, 193. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202109033.htm

    ZHAO Guan-chuang, FENG Ji-qiao, DING Jun-jun, et al. Influence of height of gravity center and moment of inertia on vehicle dynamic performance[J]. Railway Standard Design, 2021, 65(9): 181-186, 193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202109033.htm
    [21] 蔡向辉, 张乾, 贺天龙. 张家界七星山齿轨铁路轨道技术研究[J]. 铁道标准设计, 2020, 64(7): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202007014.htm

    CAI Xiang-hui, ZHANG Qian, HE Tian-long. Research on track technology of Qixing Mountain Rack Railway in Zhangjiajie[J]. Railway Standard Design, 2020, 64(7): 76-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202007014.htm
    [22] 张乾, 蔡小培, 蔡向辉, 等. 齿轨铁路轨道-简支梁桥相互作用及轨缝合理位置研究[J]. 工程力学, 2021, 38(3): 248-256. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202103023.htm

    ZHANG Qian, CAI Xiao-pei, CAI Xiang-hui, et al. Research on simply supported beam-track interaction and reasonable gap position of rack railway[J]. Engineering Mechanics, 2021, 38(3): 248-256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202103023.htm
    [23] 张乾, 蔡向辉, 蔡小培, 等. 现代齿轨铁路无砟轨道纵向力学特性及结构适用性研究[J]. 铁道建筑, 2021, 61(5): 115-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202105026.htm

    ZHANG Qian, CAI Xiang-hui, CAI Xiao-pei, et al. Research on longitudinal mechanical characteristics and structure applicability of ballastless track of modern rack railway[J]. Railway Engineering, 2021, 61(5): 115-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202105026.htm
    [24] 韩义涛, 田春香, 张沐然, 等. 大坡道米轨道床阻力及轨排稳定性研究[J]. 铁道标准设计, 2022, 66(2): 16-22.

    HAN Yi-tao, TIAN Chun-xiang, ZHANG Mu-ran, et al. Research on resistance of large ramp meter-gauge rail bed and track panel stability[J]. Railway Standard Design, 2022, 66(2): 16-21. (in Chinese)
    [25] 杜文博, 苏成光, 韩笑东, 等. 齿轨铁路联结部件受力分析及纵向阻力研究[J]. 铁道标准设计, 2021, DOI: 10.13238/j.issn.1004-2954.202103020002.

    DU Wen-bo, SU Cheng-guang, HAN Xiao-dong, et al. Mechanical analysis and longitudinal resistance research on connection parts of rack railway[J]. Railway Standard Design, 2021, DOI: 10.13238/j.issn.1004-2954.202103020002.(in Chinese)
    [26] 代丰, 杨吉忠, 杨文茂, 等. 齿轨铁路活性粉末混凝土轨枕结构与力学性能研究[J]. 铁道标准设计, 2021, DOI: 10.13238/j.issn.1004-2954.202110140001.

    DAI Feng, YANG Ji-zhong, YANG Wen-mao, et al. Research on structure and mechanical properties of reactive powder concrete sleeperfor rack railway[J]. Railway Standard Design, 2021, DOI: 10.13238/j.issn.1004-2954.202110140001.(in Chinese)
    [27] 王坚强, 卢剑锋, 陈志辉, 等. 齿轨岔区可动齿条转换方案探讨[J]. 铁路通信信号工程技术, 2021, 18(7): 22-24, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-TLTX202107007.htm

    WANG Jian-qiang, LU Jian-feng, CHEN Zhi-hui, et al. Discussion on conversion scheme of movable rack in rack rail turnout section[J]. Railway Signalling and Communication Engineering, 2021, 18(7): 22-24, 53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLTX202107007.htm
    [28] 赵轩, 温炎丰, 吴晓, 等. 基于动力学仿真的齿轨车辆限界研究[J]. 机械工程与自动化, 2021(3): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX202103016.htm

    ZHAO Xuan, WEN Yan-feng, WU Xiao, et al. Gauge calculation of rack vehicles based on dynamics simulation[J]. Mechanical Engineering and Automation, 2021(3): 50-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX202103016.htm
    [29] CHEN Zhao-wei, LI Shi-hui. Dynamic evaluation and optimization of layout mode of traction motor in rack vehicle[J]. Nonlinear Dynamics, 2021, 106(4): 3025-3050.
    [30] FORRESTER B D. Advanced vibration analysis techniques for fault detection and diagnosis in geared transmission systems[D]. Melbourne: Swinburne University of Technology, 1996.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  718
  • HTML全文浏览量:  322
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-03
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回