留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动车组铝合金车体焊缝质量等级评价的应力因数计算方法

卢耀辉 李振生 尹小春 宋承裕 刘淅 卢川

卢耀辉, 李振生, 尹小春, 宋承裕, 刘淅, 卢川. 动车组铝合金车体焊缝质量等级评价的应力因数计算方法[J]. 交通运输工程学报, 2022, 22(1): 133-140. doi: 10.19818/j.cnki.1671-1637.2022.01.011
引用本文: 卢耀辉, 李振生, 尹小春, 宋承裕, 刘淅, 卢川. 动车组铝合金车体焊缝质量等级评价的应力因数计算方法[J]. 交通运输工程学报, 2022, 22(1): 133-140. doi: 10.19818/j.cnki.1671-1637.2022.01.011
LU Yao-hui, LI Zhen-sheng, YIN Xiao-chun, SONG Cheng-yu, LIU Xi, LU Chuan. Calculation methods of stress factor in welding seam quality grade evaluation of EMUs aluminum alloy car body[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 133-140. doi: 10.19818/j.cnki.1671-1637.2022.01.011
Citation: LU Yao-hui, LI Zhen-sheng, YIN Xiao-chun, SONG Cheng-yu, LIU Xi, LU Chuan. Calculation methods of stress factor in welding seam quality grade evaluation of EMUs aluminum alloy car body[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 133-140. doi: 10.19818/j.cnki.1671-1637.2022.01.011

动车组铝合金车体焊缝质量等级评价的应力因数计算方法

doi: 10.19818/j.cnki.1671-1637.2022.01.011
基金项目: 

国家自然科学基金项目 51275428

国家自然科学基金项目 51775450

国家自然科学基金项目 51875482

四川省科技计划项目 2022YFG0251

详细信息
    作者简介:

    卢耀辉(1973-),男,甘肃民勤人,西南交通大学教授,工学博士,从事车辆结构振动疲劳与焊接疲劳断裂研究

  • 中图分类号: U266.2

Calculation methods of stress factor in welding seam quality grade evaluation of EMUs aluminum alloy car body

Funds: 

National Natural Science Foundation of China 51275428

National Natural Science Foundation of China 51775450

National Natural Science Foundation of China 51875482

Sichuan Science and Technology Program 2022YFG0251

More Information
  • 摘要: 建立了某型动车组铝合金焊接车体的有限元分析模型,对焊缝部位进行简化建模,焊缝与实际存在的差异在等效结构应力计算中进行修正;基于标准BS EN 12663—1:2010分析了车体承受的载荷,采用Box-Behnken正交矩阵设计确定了车体的9个疲劳载荷工况;对车体有限元模型施加多轴载荷,分析了车体侧墙上的4条长焊缝部位的应力分布,确定了6个应力因数计算的关注点;采用名义应力法和等效结构应力法计算车体侧墙焊缝的应力因数,对比分析了2种应力分析方法。分析结果表明:2种应力分析方法在循环次数为1.0×107的许用应力范围不同,名义应力为16.40 MPa,等效结构应力为26.61 MPa;6个关注点的名义应力范围均小于其等效结构应力范围,得到的车体焊缝6个关注点的名义应力和等效结构应力的应力因数分别为0.33、0.25、0.50、0.49、0.76、0.62和0.23、0.24、0.39、0.45、0.61、0.48;针对同一焊缝的关注点,名义应力法计算的应力因数大于采用等效结构应力法计算的应力因数;名义应力法存在很大的分散性,导致应力因数偏大,而等效结构应力法物理意义更明确,计算的应力因数更为合理。

     

  • 图  1  焊接车体有限元模型

    Figure  1.  Finite element model of welded car body

    图  2  关注焊缝及边界条件

    Figure  2.  Concerned welding seams and boundary conditions

    图  3  基于名义应力法的应力因数计算流程

    Figure  3.  Stress factor calculation process based on nominal stress method

    图  4  基于等效结构应力法的应力因数计算流程

    Figure  4.  Stress factor calculation process based on equivalent structural stress method

    图  5  载荷施加方式与车体应力分布

    Figure  5.  Load application method and car body stress distribution

    图  6  名义应力范围和结构应力范围转化方法

    Figure  6.  Transformation method for nominal stress range and structural stress range

    图  7  关注焊缝的应力范围

    Figure  7.  Stress ranges for concerned welding seam

    图  8  关注点的应力因数对比

    Figure  8.  Stress factor comparison for concerned points

    表  1  组合疲劳载荷工况

    Table  1.   Combined fatigue load conditions

    工况编号 横向加速度 纵向加速度 垂向加速度
    1 0.15g 0 0.85g
    2 0 0.15g 0.85g
    3 0 -0.15g 0.85g
    4 0.15g 0.15g 1.00g
    5 0 0 1.00g
    6 -0.15g 0.15g 1.00g
    7 0.15g 0 1.15g
    8 0 -0.15g 1.15g
    9 0 0.15g 1.15g
    下载: 导出CSV

    表  2  焊缝质量的标准等级

    Table  2.   Standard grades of welding seam quality

    应力因数 应力状态 安全需求 焊缝质量等级
    S≥ 0.90 CP A
    CP B
    CP C2
    0.75≤S < 0.90 CP B
    CP C2
    CP C3
    S < 0.75 CP C1
    CP C3
    CP D
    下载: 导出CSV
  • [1] 康兴东, 任玉鑫, 高超, 等. 铁路客车车体结构材料的演变与展望[J]. 铁道机车车辆, 2019, 39(2): 119-124. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201902028.htm

    KANG Xing-dong, REN Yu-xin, GAO Chao, et al. Evolution and prospect of railway passenger car carbody structure materials[J]. Railway Locomotive and Car, 2019, 39(2): 119-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201902028.htm
    [2] 王剑, 孙畅, 马纪军. 基于BS EN 15085标准的焊缝质量评估方法[J]. 计算机辅助工程, 2018, 27(3): 11-14, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201803003.htm

    WANG Jian, SUN Chang, MA Ji-jun. Evaluation method of weld quality based on BS EN 15085 standard[J]. Computer Aided Engineering, 2018, 27(3): 11-14, 53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201803003.htm
    [3] PAMNANI R, VASUDEVAN M, JAYAKUMAR T, et al. Numerical simulation and experimental validation of arc welding of DMR-249A steel[J]. Defence Technology, 2016, 12(4): 305-315. doi: 10.1016/j.dt.2016.01.012
    [4] LI D, YANG X, CUI L, et al. Fatigue property of stationary shoulder friction stir welded additive and non-additive T joints[J]. Science and Technology of Welding and Joining, 2015, 20(8): 650-654. doi: 10.1179/1362171815Y.0000000045
    [5] BRTDER T, STÖRZEL K, BAUMGARTNER J, et al. Evaluation of nominal and local stress based approaches for the fatigue assessment of seam welds[J]. International Journal of Fatigue, 2012, 34(1): 86-102. doi: 10.1016/j.ijfatigue.2011.06.002
    [6] FRICKE W, REMES H, FELTZ O, et al. Fatigue strength of laser-welded thin-plate ship structures based on nominal and structural hot-spot stress approach[J]. Ships and Offshore Structures, 2015, 10(1): 39-44. doi: 10.1080/17445302.2013.850208
    [7] DONG P. A structural stress definition and numerical implementation for fatigue analysis of welded joints[J]. International Journal of Fatigue, 2001, 23(10): 865-876. doi: 10.1016/S0142-1123(01)00055-X
    [8] BRUDER T, ST RZEL K, BAUMGARTNER J, et al. Evaluation of nominal and local stress based approaches for the fatigue assessment of seam welds[J]. International Journal of Fatigue, 2012, 34(1): 86-102. doi: 10.1016/j.ijfatigue.2011.06.002
    [9] 秦叔经. 压力容器中焊接接头的疲劳分析方法[J]. 化工设备与管道, 2019, 56(6): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSB201906001.htm

    QIN Shu-jing. Fatigue analysis methods for welds in pressure vessel[J]. Process Equipment and Piping, 2019, 56(6): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGSB201906001.htm
    [10] 卢耀辉, 张德文, 赵智堂, 等. 焊接残余应力对动车组铝合金车体疲劳强度的影响[J]. 交通运输工程学报, 2019, 19(4): 94-103. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201904011.htm

    LU Yao-hui, ZHANG De-wen, ZHAO Zhi-tang, et al. Influence of welding residual stress on fatigue strength for EMU aluminum alloy carbody[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 94-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201904011.htm
    [11] DONG P S, HONG J K. The master S-N curve approach to fatigue of piping and vessel welds[J]. Welding in the World. 2004, 48(1/2): 28-36.
    [12] 李向伟. 基于主S-N曲线法的焊接结构疲劳寿命预测系统开发和关键技术[J]. 计算机辅助工程, 2014, 23(4): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201404012.htm

    LI Xiang-wei. Development and key technologies of welded structure fatigue life prediction system based on master S-N curve method[J]. Computer Aided Engineering, 2014, 23(4): 46-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201404012.htm
    [13] 兆文忠, 李季涛, 李晓峰, 等. 高速动车组角焊缝应力集中的识别方法[J]. 中国铁道科学, 2018, 39(1): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201801013.htm

    ZHAO Wen-zhong, LI Ji-tao, LI Xiao-feng, et al. Identification method for stress concentration on fillet weld of high-speed EMU[J]. China Railway Science, 2018, 39(1): 82-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201801013.htm
    [14] 谢素明, 莫浩, 牛春亮, 等. 基于结构应力法的焊接构架应力状态研究[J]. 大连交通大学学报, 2019, 40(1): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201901008.htm

    XIE Su-ming, MO Hao, NIU Chun-liang, et al. Research on stress state of welded frame based on structural stress method[J]. Journal of Dalian Jiaotong University, 2019, 40(1): 36-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201901008.htm
    [15] WEI Guo-qian, OCHBILEG O, YUE Xu-dong, et al. Combine S-N curve and fracture mechanics for fatigue life analysis of welded structures[J]. China Welding, 2019, 28(4): 39- 45.
    [16] JUN Yun-yu, JUNG Y S, LE D Y, et al. Fatigue crack evaluation on the underframe of EMU carbody[J]. Procedia Engineering, 2010, 2(1): 893-900. doi: 10.1016/j.proeng.2010.03.096
    [17] LU Yao-hui, DANG Lin-yuan, ZHANG Xing, et al. Analysis of the dynamic response and fatigue reliability of a full-scale carbody of a high-speed train[J]. Journal of Rail and Rapid Transit, 2018, 232(7): 2006-2023. doi: 10.1177/0954409718757295
    [18] KIM J S. Fatigue assessment of tilting bogie frame for Korean tilting train: analysis and static tests[J]. Engineering Failure Analysis, 2005, 13(8): 1326-1337.
    [19] 阳光武, 赵科, 肖守讷, 等. 基于拉弯比的焊缝名义应力的提取[J]. 工程设计学报, 2011, 18(6): 423-427. https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ201106008.htm

    YANG Guang-wu, ZHAO Ke, XIAO Shou-ne, et al. Nominal stress extraction of weld based on ratio of tension and bending[J]. Journal of Engineering Design, 2011, 18(6): 423-427. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ201106008.htm
    [20] LILLEMÄE I, REMES H, LⅡNALAMPI S, et al. Influence of weld quality on the fatigue strength of thin normal and high strength steel butt joints[J]. Welding in the World, 2016, 60(4): 731-740.
    [21] 卢耀辉, 冯振, 陈天利, 等. 铁道车辆转向架构架多轴疲劳强度有限元分析方法[J]. 北京交通大学学报, 2014, 38(4): 26-31, 39. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201404006.htm

    LU Yao-hui, FENG Zhen, CHEN Tian-li, et al. Finite element analysis of multi-axial fatigue strength for railway vehicle bogie frame[J]. Journal of Beijing Jiaotong University, 2014, 38(4): 26-31, 39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201404006.htm
    [22] MEI J, DONG P S. An equivalent stress parameter for multi-axial fatigue evaluation of welded components including non-proportional loading effects[J]. International Journal of Fatigue, 2017, 101: 297-311.
    [23] LU Yao-hui, BI Wei, ZHANG Xing, et al. Calculation method of dynamic loads spectrum and effects on fatigue damage of a full-scale carbody for high-speed trains[J]. Vehicle System Dynamics, 2020, 58(7): 1037-1056.
    [24] DONG P. Arobust structural stress method for fatigue analysis of offshore/marine structures[J]. Journal of Offshore Mechanics and Arctic Engineering, 2005, 127(1): 68-74.
    [25] KYUBA H, DONG P S. Equilibrium-equivalent structural stress approach to fatigue analysis of a rectangular hollow section joint[J]. International Journal of Fatigue, 2004, 27(1): 85-94.
    [26] LU Yao-hui, ZHENG He-yan, LU Chuan, et al. Analysis methods of the dynamic structural stress in a full-scale welded carbody for high-speed trains[J]. Advances in Mechanical Engineering, 2018, 10(10): 1-16.
    [27] 周张义, 李芾. 基于表面外推的热点应力法平板焊趾疲劳分析研究[J]. 铁道学报, 2009, 31(5): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200905016.htm

    ZHOU Zhang-yi, LI Fu. Study on fatigue analysis of welded toes of plate structures using hot spot stress method based on surface extrapolation[J]. Journal of the China Railway Society, 2009, 31(5): 90-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200905016.htm
    [28] 卢耀辉, 冯振, 曾京, 等. 高速列车车体动应力分析方法及寿命预测研究[J]. 铁道学报, 2016, 38(9): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201609005.htm

    LU Yao-hui, FENG Zhen, ZENG Jing, et al. Research on dynamic stress analysis methods and prediction of fatigue life for carbody of high speed train[J]. Journal of the China Railway Society, 2016, 38(9): 31-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201609005.htm
    [29] 马思群, 谷理想, 袁永文, 等. 焊接缺陷对动车组铝合金车体疲劳寿命影响研究[J]. 铁道学报, 2014, 36(2): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201402008.htm

    MA Si-qun, GU Li-xiang, YUAN Yong-wen, et al. Research on influence of welding defects on fatigue life of EMU aluminum-alloy car body[J]. Journal of the China Railway Society, 2014, 36(2): 42-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201402008.htm
    [30] 周韶泽, 王超远, 李向伟, 等. 焊接接头质量等级评定方法与系统开发[J]. 机械研究与应用, 2020, 33(2): 164-167. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYJ202002052.htm

    ZHOU Shao-ze, WANG Chao-yuan, LI Xiang-wei, et al. Research and development of welded joint quality grade assessment system[J]. Mechanical Research and Application, 2020, 33(2): 164-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXYJ202002052.htm
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  740
  • HTML全文浏览量:  280
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回